

Sensor Performance Evaluator for Battlefield Environments

(SPEBE) C++ Application Programming Interface (API)
Version 1.0

by David Marlin and Shane Thomas

ARL-TR-4363 January 2008

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Army Research Laboratory
White Sands Missile Range, NM 88002- 5501

ARL-TR-4363 January 2008

Sensor Performance Evaluator for Battlefield Environments

(SPEBE) C++ Application Programming Interface (API)
Version 1.0

David Marlin

Computational and Information Sciences Directorate, ARL

and

Shane Thomas
Physical Science Laboratory, New Mexico State University

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Sensor Performance Evaluator for Battlefield Environments (SPEBE) C++ Application
Programming Interface (API) Version 1.0

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

David Marlin (U.S. Army Research Laboratory) and Shane Thomas (Physical Science
Laboratory, NMSU)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Computational and Information Sciences Directorate
Battlefield Environment Division (ATTN: AMSRD-ARL-CI-ES)
White Sands Missile Range, NM 88002-5501

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4363

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this report, a C++ library based on a compiled version of the Matlab-based Sensor Performance Evaluator for Battlefield Environments
(SPEBE) is described. The library encapsulates the details of the Matlab infrastructure, including m-files and mxArray manipulation functions,
so that the programmer can concentrate on the use of SPEBE rather than the details of compiled Matlab code. The high-level architecture of
SPEBE is duplicated in the C++ class hierarchy, providing the programmer with classes that represent the functional grouping of data and
computations found in SPEBE. These high-level classes are derived from low-level classes, which encapsulate the mxArrays and invoke the
compiled m-files. Thus, the high-level classes are insensitive to changes in the compiled Matlab code resulting from Matlab revisions, while
the low-level classes provide basic compiled Matlab functionality without regard to the overall SPEBE architecture. This greatly simplifies
maintenance of the library in response to changes in either Matlab or SPEBE.
15. SUBJECT TERMS

Acoustic sensors, acoustic propagation, acoustic performance modeling, acoustic decision aid

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

David Marlin
a. REPORT

U
b. ABSTRACT

 U
c. THIS PAGE

U

17. LIMITATION
OF

 ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

104 19b. TELEPHONE NUMBER (Include area code)

(575) 678-1524
Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures vi

List of Tables vii

Summary 1

1. Introduction 3

2. Basic Architecture 5
2.1 SPEBE Structures..5

2.2 Location, Environment, and Computational Grid ...6

2.3 Propagation Calculations...7

2.4 Sensor Calculations ...8

2.5 Some Examples ...8

3. Class List 11

4. Class Hierarchy 13
4.1 CMXArray Class Reference..13

4.1.1 Constructor and Destructor Documentation..14
4.1.2 Member Function Documentation...15

4.2 CMXNumeric Class Reference ...15
4.2.1 Constructor and Destructor Documentation..16
4.2.2 Member Function Documentation...18

4.3 ResultGrid Class Reference...19
4.3.1 Constructor and Destructor Documentation..19
4.3.2 Member Function Documentation...20

4.4 CMXString Class Reference ...22
4.4.1 Constructor and Destructor Documentation..22
4.4.2 Member Function Documentation...22

4.5 CMXStructure Class Reference ..23
4.5.1 Member Function Documentation...24

4.6 CMXMultiStructure Class Reference ...25

iv

4.6.1 Member Function Documentation...26

4.7 CRcvrInfo Class Reference ...28
4.7.1 Constructor and Destructor Documentation..28
4.7.2 Member Function Documentation...29

4.8 CSourceInfo Class Reference..30
4.8.1 Constructor and Destructor Documentation..30
4.8.2 Member Function Documentation...32

4.9 CMXSingleStructure Class Reference ..33
4.9.1 Member Function Documentation...34

4.10 CBarrierInfo Class Reference ...35
4.10.1 Constructor and Destructor Documentation..35

4.11 CDomain Class Reference...36
4.11.1 Constructor and Destructor Documentation..37
4.11.2 Member Function Documentation...38

4.12 CGroundInfo Class Reference...43
4.12.1 Constructor and Destructor Documentation..44

4.13 CMetInfo Class Reference ..45
4.13.1 Member Enumeration Documentation ..45
4.13.2 Constructor and Destructor Documentation..46
4.13.2 Member Function Documentation...46

4.14 CNoizInfo Class Reference ...51
4.14.1 Constructor and Destructor Documentation..51
4.14.2 Member Function Documentation...52

4.15 CPropagator Class Reference..53
4.15.1 Member Enumeration Documentation ..54
4.15.2 Constructor and Destructor Documentation..54
4.15.3 Member Function Documentation...55

4.16 CSeismicInfo Class Reference ..58
4.16.1 Constructor and Destructor Documentation..58

4.17 CTerrainInfo Class Reference ...59
4.17.1 Constructor and Destructor Documentation..60

4.18 PerformanceCalculator Class Reference ...60
4.18.1 Member Enumeration Documentation ..62
4.18.2 Constructor and Destructor Documentation..62
4.18.3 Member Function Documentation...63

v

5. Miscellaneous Functions 66

6. Conclusion 67

References 68

Appendix A. CDomain Supplemental Information 71

Appendix B. CPropagator Supplemental Information 73

Appendix C. CMetInfo Supplemental Information 75

Appendix D. CGroundInfo Supplemental Information 79

Appendix E. CSeismicInfo Supplemental Information 81

Appendix F. CNoizInfo Supplemental Information 83

Appendix H. CBarrierInfo Supplemental Information Omitted

Appendix G. CTerrainInfo Supplemental Information 85

Appendix I. CSourceInfo Supplemental Information 87

Appendix J. CRcvrInfo Supplemental Information 89

Appendix K. PerformanceCalculator Supplemental Information 91

Acronyms 93

Distribution List 94

vi

List of Figures

Figure 1. Inheritance diagram for CMXArray. ..13
Figure 2. Inheritance diagram for CMXNumeric. ..15
Figure 3. Inheritance diagram for ResultGrid. ...19
Figure 4. Inheritance diagram for CMXString. ..22
Figure 5. Inheritance diagram for CMXStructure. ..23
Figure 6. Inheritance diagram for CMXMultiStructure..25
Figure 7. Inheritance diagram for CRcvrInfo. ..28
Figure 8. Inheritance diagram for CSourceInfo..30
Figure 9. Inheritance diagram for CMXSingleStructure. ..33
Figure 10. Inheritance diagram for CBarrierInfo. ...35
Figure 11. Inheritance diagram for CDomain. ..36
Figure 12. Inheritance diagram for CGroundInfo..43
Figure 13. Inheritance diagram for CMetInfo. ...45
Figure 14. Inheritance diagram for CNoizInfo..51
Figure 15. Inheritance diagram for CPropagator. ..53
Figure 16. Inheritance diagram for CSeismicInfo. ...58
Figure 17. Inheritance diagram for CTerrainInfo ..59
Figure 18. Inheritance diagram for PerformanceCalculator. ..60
Figure C-1. SPEBE meteorological calculation execution flow diagram......................................77

vii

List of Tables

Table 1. Class list. ..11
Table A-1. Origin fields. ..71
Table A-2. Miscellaneous domain parameters...71
Table B-1. PropInfo fields. ..73
Table B-2. PropTab fields (acoustic and seismic). ..74
Table C-1. MetInfo fields. ...75
Table D-1. GroundInfo fields. ...79
Table E-1. SeismicInfo fields. ...81
Table F-1. NoizInfo fields..83
Table F-2. NoizInfo.seismic and NoizInfo.acoustic fields. ...83
Figure G-1. TerrainInfo fields..85
Table I-1. SourceInfo fields. ..87
Table I-2. SourceInfo.AcsSpec and SourceInfo.SeisSpec fields. ..87
Table J-1. RcvrInfo fields. ...89
Table J-2. RcvrInfo.SensSpec and RcvrInfo.NoizSpec fields. ..89
Table K-1. SPEBE parameters used by PerformanceCalculator. ...91

viii

INTENTIONALLY LEFT BLANK.

1

Summary

The Sensor Performance Evaluator for Battlefield Environments (SPEBE) is a highly evolved
decision aid and acoustic system developer tool to assist in performance modeling of acoustic
sources and sensors on the battlefield as well as in non-battlefield and civil situations. It
integrates acoustic and seismic propagation, atmospheric conditions, terrain, ground cover,
geological effects, background noise, and extensible source and sensor modeling, under a point-
and-click Graphical User Interface (GUI), to enable the user to predict a broad range of acoustic
and seismic sensor performance characteristics. SPEBE incorporates a range of acoustic
propagation capabilities including low-fidelity models for near-real-time battlefield calculations
and high-fidelity models for advanced planning and sensor development. Users can add their
own source and sensor models, as well as custom detection, estimation, and beam-forming
algorithms.

In many cases, however, the computational capabilities of SPEBE are needed for existing,
proposed, or under-development systems that include their own graphical environment,
precluding the direct incorporation of the SPEBE GUI. Thus, what is needed is a callable library
of SPEBE calculations distinct from the GUI. This library should closely duplicate the logic and
execution of SPEBE, while accepting input parameters and providing output data via function
calls rather than pop-up menus and displays.

That is the purpose of the SPEBE C++ Application Programming Interface (API). In addition to
meeting the requirement to perform SPEBE calculations with the same logic and execution as
SPEBE, the callable library should be maintainable, in the sense that changes in the GUI version
of SPEBE should be easily incorporated into the API. Furthermore, the C++ classes should be
extensible, in the sense that the user can readily adapt and extend them for smooth integration
into another system. Finally, it should be independent of the underlying environment with which
SPEBE was developed, Matlab. Users of the SPEBE API should not be burdened with aspects of
compiled Matlab code, but rather should see only classes that encapsulate the data and
computational aspects of SPEBE functionality.

This is accomplished by a two-level class hierarchy. The lower-level hierarchy encapsulates the
data and methods of compiled Matlab code, providing manipulation of the data and execution of
the functions without detailed knowledge of the Matlab. The upper-level hierarchy, derived from
the lower-level, encapsulates the logical data and computation architecture of SPEBE. In this
way, the lower-level classes can be modified to accommodate changes in Matlab and the Matlab
compiler without impacting the SPEBE API visible to the user. Similarly, changes in the API can
be made without regard to the details of compiled Matlab code.

2

INTENTIONALLY LEFT BLANK.

3

1. Introduction

This report details an Application Programming Interface (API) that provides a developer with
the ability to integrate Sensor Performance Evaluator for Battlefield Environments (SPEBE)
(1–11) computations into systems which for one reason or another can’t use the SPEBE
Graphical User Interface (GUI). It can also be used as the foundation for a specialized GUI built
in Java, Microsoft Foundation Class (MFC), or another such tool. It does this without forcing the
developer to master the use of compiled Matlab* code by performing the following:

• It encapsulating the basic Matlab data structure, the mxArray.

• It wraps the compiled m-files.

The overall structure of the API is true to the architecture of SPEBE and is based on several
Matlab structures, which group the SPEBE data (section 2.1). These structures are encapsulated
by the API classes, and appropriate m-files are included in the class methods in order to set and
retrieve data as necessary. All calculations are performed by SPEBE m-files. Thus, the API
simply “wraps” the SPEBE structures, providing the programmer access to certain parameters,
and passes these structures back and forth between the SPEBE m-files for calculations. This
ensures that the API performs exactly the same calculations as the GUI version of SPEBE.

The API can be divided into two parts:

• a low-level class hierarchy that manages the compiled Matlab machinery, and

• a high-level set of derived classes that present the SPEBE interface to the end-user without
regard to the specific details of compiled Matlab code.

The heart of the API is the CMXArray, which encapsulates a Matlab mxArray; however, the
CMXArray class is never used directly by the developer. Instead, there are a number of classes,
such as the following:

• derived classes (such as CMXNumeric, and CMXStructure, etc.), which encapsulate
particular types of mxArray, and

• further derived classes (such as CMetInfo, CDomain, etc.), which in turn encapsulate
specific SPEBE data structures.

The general naming convention is as follows:

*Matlab is a registered trademark of The MathWorks, Inc.

4

• A lower-level derived class that directly encapsulates a particular mxArray type (such as
CMXNumeric, and CMXStructure, etc.) is prefixed with “CMX”.

• A higher-level derived class that encapsulates one or more specific SPEBE structures (such
as CMetInfo, CDomain, etc.) is prefixed simply with “C”.

• A higher-level derived class that does not directly encapsulate any SPEBE structure (such
as PerformanceCalculator) has no specific prefix.

In general, the lower-level, CMX classes incorporate all of the mxArray functionality, insulating
the higher-level classes from any specific compiled Matlab dependency. Thus, the higher-level,
SPEBE-specific classes should look the same regardless of changes in the Matlab compiler
operation and behavior of mxArrays and the associated Matlab mx function calls.

Furthermore, by encapsulating the SPEBE mxArray structures in C++ classes rather than
defining parallel structures in C, the internal coding of the API is made less sensitive to revisions
in the SPEBE structures. As long as the .mat files are current, the encapsulated mxArrays will
contain the proper fields, without the need to modify any C structures. If a new field requires
modification, then an appropriate method will have to be added to the associated higher-level
class, but the methods in CMXStructure make this extremely simple.

Thus the principal advantages of the C++ API are as follows:

• The low-level interface is insensitive to changes in SPEBE.

• The high-level interface is independent of changes in Matlab and the Compiler Toolbox.

• The high-level interface is relatively easily modified to incorporate changes in SPEBE.

The classes of the API are depicted and described in more detail in the subsequent sections and
also in the specific class documentation.

NOTE: Portions of the documentation that are specific to the lower-level interface or details of
the Matlab SPEBE implementation are generally preceded by “Internal behavioral details” and
can be ignored by the user who is only interested in the high-level SPEBE functionality. These
sections are intended primarily for developers of the API, as opposed to end users. However,
some insight can be gained into the underlying SPEBE architecture and the logic behind the API
organization, so these sections can be beneficial to the end user as well.

5

2. Basic Architecture

2.1 SPEBE Structures

The basic SPEBE structures are as follows:

• Location and computational grid descriptors:

◦ Origin, Lx, Ly: geographical location and extent of the computational domain

◦ Nx, Ny: dimensions of the computational grid

• Environment descriptors:

◦ MetInfo: meteorological parameters and profiles

◦ GroundInfo: ground impedance characterization

◦ TerrainInfo

◦ BarrierInfo

• Source and sensor descriptors:

◦ SourceInfo

◦ RcvrInfo

• Propagation calculation descriptors:

◦ PropInfo: acoustic and seismic propagation models, associated parameters

◦ AcsPropTab, SeisPropTab: table parameters associated with some of the propagation
models

There are hundreds of SPEBE m-files, but all are basically of two types:

• GUI and graphics

• Acoustic and meteorological calculations

The API separates the GUI and graphics from the calculations and makes the latter available to
the programmer. In the discussion that follows, reference will sometimes be made to the GUI,
but this is only for illustrative purposes.

6

When the GUI version of SPEBE starts up, most of the SPEBE structures are created with
default values for many, but not all, of their fields. Also, the GUI can be configured so that most
of the structures will have values read from a set of .mat files. The associated C++ API classes
mimic this behavior, by setting the same default parameters upon instantiation, and also provide
constructors that will read values from specified .mat files.

The parameters associated with a specific structure can be modified within Matlab by editing the
associated .mat files, but this is not the usual mode of operation. Instead, in the GUI, the user
selects options from pull-down menus. Internally, m-files are then called that set the appropriate
fields of the appropriate structures. In the C++ API, these fields are set by methods (functions) of
the associated classes. Sections 2.2 through 2.4 describe this in more detail.

2.2 Location, Environment, and Computational Grid

The CDomain, CMetInfo, CGroundInfo, CTerrainInfo, and CBarrierInfo classes
encapsulate the SPEBE structures involved with the location, environment, and computational
grid setup. Details of each can be found under their class descriptions. CDomain incorporates
the location and computational grid parameters, while the other classes are self-explanatory. The
following example of the CMetInfo class illustrates the general relationship between a SPEBE
structure, the related m-files invoked by the GUI, and the associated C++ class.

To specify the predefined meteorological case “Mostly Sunny, Light Wind,” the GUI user would
navigate the pull-down menus by selecting Weather >> Pre-Defined Meteorological Cases >>
Mostly Sunny, Light Wind.

This would result in a menu-callback that performs the following:

1. Prompts the user for these parameters:

• wind direction

• surface temperature and the height of the temperature measurement

• surface humidity and the height of the humidity measurement

2. Sets several parameters in the MetInfo structure.

3. Calls an m-file function to generate similarity profiles using the MetInfo parameters as well
as certain GroundInfo parameters.

The C++ API programmer would instead call the following:

 CMetInfo::SetPredefinedMeteorology(PredefinedMet metCase, double dWindDir,
double dTemp, double dTempHeight, double dRelHumid, double dRelHumHeight,
CGroundInfo *ground)

7

With the argument metCase selected from the enumerated type:

 PredefinedMet {SunnyLightWind=2, SunnyModerateWind, SunnyStrongWind,
 NightLightWind, NightModerateWind, NightStrongWind,
 OvercastLightWind, OvercastModerateWind,
 OvercastStrongWind};

This method then performs the following:

1. Sets the appropriate fields within the encapsulated MetInfo structure.

2. Calls the same (compiled) m-file function to generate the same similarity profiles using the
encapsulated MetInfo parameters as well as the encapsulated GroundInfo parameters from
the ground argument.

2.3 Propagation Calculations

Once all the appropriate parameters are set, including the meteorology (CMetInfo), seismology
(CSeismicInfo), and ground characterization (CGroundInfo), any of the propagation models
can be invoked to determine transmission losses. These are required for sensor calculations and
may also be of interest in their own right.

Within the GUI, a user can invoke transmission loss calculation explicitly, by requesting
transmission loss, or implicitly, by requesting a sensor performance calculation such as detection
probability. In the latter case, SPEBE will generate acoustic and/or seismic propagation tables
and save them to files. These tables contain transmission loss data over the computational grid at
a set of frequencies specified in the AcsPropTab and SeisPropTab structures. They are saved in
temporary files, whose names are specified within the AcsPropTab and SeisPropTab structures.

The user also has the option to explicitly save the tables as permanent files, and the permanent
file names will be stored in the AcsPropTab and SeisPropTab structures. The only difference
between the temporary files and the permanent files is that the former are overwritten whenever
a new transmission loss calculation is made, while the latter can be reused any time.

The API has two restrictions on the GUI behavior described above:

1. The propagation calculations must be explicitly requested.

2. The resulting propagation tables must be stored in a permanent file.

For example, to invoke the acoustic propagation calculations and save the acoustic propagation
table, the programmer would make the following calls:

 CPropagator::SetAcsPropMod(AcsPropModel acsPropModel);
CPropagator::SetFilePrefix(char *filePrefix, char *fileDir);
CPropagator::GenerateAcousticPropagationTable(double sourceHeight, double
receiverHeight, CMetInfo *metInfo, CDomain *domain);

8

NOTE: The filePrefix is not the full file name and should not include a file type; it will be
appended with “_acs.mat” for an acoustic propagation table and “_seis.mat” for a seismic table.

2.4 Sensor Calculations

For a detailed description of SPEBE sensor calculations, see the description of the
PerformanceCalculator class (section 4.18).

Internal behavioral details.

NOTE: With regard to the distinction between GUI m-files and calculation m-files, there is some
overlap when graphics commands, such as waitbars, are embedded in the calculations. More
importantly, in SPEBE version 1.2 there were some instances where calculations, and the setting
of parameters, were embedded in the GUI-related functions—particularly in some of the
callbacks and menu-prompting routines. This makes it difficult to insure the API behaves exactly
as the GUI version since it requires the embedded calculations and parameter-setting to be
duplicated in separate code within the API. Any subsequent changes to these m-files would the
have to be reflected in the API code. This invites mistakes and violates one of the basic
principles of the API: All calculations are performed by SPEBE m-files. Thus, a few changes
were made to the SPEBE m-files in order to move the offending calculations and parameter-
setting into calculation-specific m-files.

2.5 Some Examples

Every process must begin with the call:

 abfamlbmInitialize();

Prior to making any SPEBE API calls, it should end with the following:

 abfamlbmTerminate();

The following code segment provides some examples of the use of the API:

// initialize the compiled Matlab dll
abfamlbmInitialize();

//instantiate a new CDomain object from the file "Terrain.mat",
// and set the location, grid, and terrain elevations
CDomain *dInfo = new CDomain("Terrain.mat");
double lat = 33.0265;
double long = -106.139;
double lx = 1000;
double ly = 1000;
int timeZone = 6;
dInfo->SetLocation(lat, long ,lx ,ly , timeZone);
int nx = 100;

9

int ny = 100;
dInfo->SetGridDimensions(nx, ny);
dInfo->LoadDTEDHeights("f:\\");

// instantiate a new default CMetInfo object
// and select a predefined meteorological case,
// using the CGroundInfo object contained within the CDomainInfo
object above
mInfo = new CMetInfo();
double windDir = 180;
double surfTemp = 25;
double tempHt =1;
double relHum = .8;
double humHt = 1;
mInfo->SetPredefinedMeteorology(SunnyLightWind, windDir, surfTemp,
 tempHt, relHum, humHt,
 dInfo->GetGroundInfo());

// instantiate a new CSourceInfo object, containing only one source,
// from the file "HMMWV, 0 mph.mat",
CSourceInfo *srInfo = new CSourceInfo("HMMWV, 0 mph.mat");

// instantiate a new CRcvrInfo object, containing only one receiver,
// from the file "ISO Standard (good hearing).mat"
 CRcvrInfo* humanInfo = new CRcvrInfo("ISO Standard (good
 hearing).mat");

// instantiate a new CRcvrInfo object, containing only one receiver,
// from the file "GeoSpace 1-Hz geophone.mat"
CRcvrInfo* geophoneInfo = new CRcvrInfo("GeoSpace 1-Hz geophone.mat");

// instantiate a new CPropagator from the file "Prop.mat",
// set the propagation models and file names,
// and generate propagation tables for the source and sensor
// heights of the CSourceInfo and CRcvrInfo objects instantiated above
pInfo = new CPropagator("Prop.mat");
pInfo->SetFilePrefix("test_table", "D:\\SPEBE\\SPEBEruntime\\");
pInfo->SetAcsPropMod(SCAPE);
pInfo->SetSeisPropMod(HARVEY_MODE_SUM);
pInfo->GenerateAcousticPropagationTable(srInfo->GetHeight(0),
 humanInfo->GetHeight(0), mInfo, dInfo);
pInfo->GenerateSeismicPropagationTable(srInfo->GetHeight(0),
 geophoneInfo->GetHeight(0), dInfo);

// instantiate a new PerformanceCalculator, in ReceiverCentric mode,

10

// for the human receiver and HMMWV above,
// and generate detection probabilities.
// Note that the CRcvrInfo object contains only one receiver, with
index 0.
// This is the receiver activated in the call Activate(0) below.
// Also, the CSourceInfo object contains only on source, with index 0.
// This is the source selected in the call GetPD(0) below.
PerformanceCalculator* theCalculator = new
 PerformanceCalculator(humanInfo, srInfo,
 mInfo, dInfo, pInfo, RcvrCentric);
theCalculator->Activate(0);
ResultGrid *theHumanGrid = theCalculator->GetPD(0);
delete theCalculator;

// instantiate a new PerformanceCalculator, in ReceiverCentric mode,
// for the geophone receiver and HMMWV above,
// and generate detection probabilities
theCalculator = new PerformanceCalculator(geophoneInfo, srInfo, mInfo,
 dInfo, pInfo, RcvrCentric);
theCalculator->Activate(0);
ResultGrid* theGeophoneGrid = theCalculator->GetPD(0);

// clean house
abfamlbmTerminate();

11

3. Class List

Table 1 lists the classes, structures, unions, and interfaces with brief descriptions.

Table 1. Class list.

Name Description

CBarrierInfo Encapsulates the SPEBE BarrierInfo structure.

CDomain

Encapsulates the SPEBE Origin, Nx, Ny, Lx, Ly, heights, xdom, and ydom
structures. Also contains CGroundInfo, CTerrainInfo, CSeismicInfo, and
CBarrierInfo objects for convenience. All these can be initialized from a single
call to LoadFile, using a Terrain.mat file.

CGroundInfo

Encapsulates the SPEBE GroundInfo structure, which contains a number of
parameters characterizing the ground with regard to its acoustic impedance, effect
on wind, and thermal absorption and radiation characteristics. However, these
parameters are not manipulated within the scope of the SPEBE API, but instead
are specified via a collection of files describing various common ground types,
including

• Urban,
• Suburban,
• Asphalt,
• Gravel,
• Sand,
• Brush,
• Forest,
• Short grass,
• Long grass,
• Open water,
• Ice, and
• Snow.

CMetInfo Encapsulates the SPEBE MetInfo structure.

CMXArray Encapsulates a Matlab mxArray, and also includes various utilities for
manipulating mxArrays.

CMXMultiStructure Adds methods to manage arrays of identical structures. It is intended to support
Source and Rcvr arrays.

CMXNumeric Encapsulates numeric type mxArrays, providing various methods to manipulate
the data.

CMXSingleStructure Streamlines CMXStructure for use with single-element Matlab structures.
Arrays of Matlab structures are managed by CMXMultiStructure.

CMXString Encapsulates string mxArrays.

CMXStructure Encapsulates a Matlab array of structures.

12

Table 1. Class list (continued).

Name Description

CNoizInfo

Encapsulates the SPEBE NoizInfo structure, which contains three fields: the
acoustic spectrum, the seismic spectrum, and a flag to indicate whether or not to
include acoustic wind noise. The acoustic and seismic spectra are in turn
described by structures defining the spectral bands in terms of lower and upper
frequency, slope, and loudness.

CPropagator

Encapsulates the SPEBE PropInfo structure. Also manages acoustic and seismic
PropTab structures internally, and includes a CNoizInfo object for convenience.
All these can be initialized with from a single call to LoadFile, from a Prop.mat
file.

CRcvrInfo Encapsulates the SPEBE RcvrInfo structure.

CSeismicInfo Encapsulates the SPEBE SeismicInfo structure, which defines vertical profiles of
P and S-wave velocity and attenuation as well as density.

CSourceInfo Encapsulates the SPEBE SourceInfo structure.

CTerrainInfo

Encapsulates the SPEBE TerrainInfo structure, which contains parameters
characterizing random terrain elevations. Random terrain is not currently
supported by the API, so this class has no methods for specifying, manipulating,
or retrieving parameters. It is provided because it is needed internally by some of
the terrain and domain related m-files which are part of the compiled library.

MFileHandler This Helper class manages input and output mxArray arrays for calling m files.

PerformanceCalculator Performs the sensor performance calculations of SPEBE.

ResultGrid
Encapsulates two-dimensional (2-D) gridded data returned by SPEBE
calculations, such as detection probability. Also generates contour plots of the
encapsulated data.

13

4. Class Hierarchy

4.1 CMXArray Class Reference

Figure 1. Inheritance diagram for CMXArray.

The CMXArray class encapsulates a Matlab mxArray and also includes various utilities for
manipulating mxArrays.

The encapsulated array can be any Matlab array type. This class contains various utilities for
working with mxArrays in general, such as a method to load an mxArray from a file, methods to
encapsulate mxDuplicate and mxDestroy, and a class to manage arguments for compiled m-files.

14

USE CASES: This class has no public constructors. It is intended as the base class for
subclasses, which will encapsulate different types of mxArrays:

• CMXNumeric

• CMXStructure

Warning: In all cases, the internal mxArray should be encapsulated. The two methods,
::SetArray and ::GetArray, will deep copy the input/output array for this purpose. The
::SetArray method will also do an mxDestroy on the existing encapsulated mxArray, if it exists.
These methods should be used AT ALL TIMES, with the following exceptions:

• Direct subclasses (CMXNumeric and CMXStructure) can access the encapsulated
mxArray directly to obtain information such as the field names, the number of fields,
number of elements, type of mxArray, etc.

• Direct subclasses can assign the encapsulated mxArray directly in the constructors, and
delete it in the destructors.

• CMXStructure can access the encapsulated mxArray directly to modify fields within a
structure array.

Second-generation derived classes (i.e., subclasses of CMXNumeric and CMXStructure)
should refrain from accessing the encapsulated mxArray directly and should also refrain from
creating or deleting any mxArrays directly.

Failure to adhere to these practices may result in poor memory use and crashes.

4.1.1 Constructor and Destructor Documentation

CMXArray (mxArray * theArray,
 const char * arrayName

)

This function encapsulates a deep copy of theArray as the internal mxArray, m_mxArray, and
gives it the specified name, arrayName.

Parameters:

• theArray – the mxArray to be copied

• arrayName – the array name; it will be copied into the m_arrayName attribute

15

~CMXArray(void) [virtual]

This function invokes a Matlab command to completely free all memory allocated to the
encapsulated mxArray. NOTE: Always delete CMXArrays.

4.1.2 Member Function Documentation

const char * GetArrayName (void)

This function returns a pointer to the array name, arrayName.

Returns: A const char* pointer to the CMXArray array name. This doesn’t call malloc (since
the return is const), so do not call free.

int GetNumElements (void)

This function returns the number of elements in the encapsulated mxArray.

Returns: The number of elements

void SaveToFile (const char * fileName) [virtual]

This function saves the encapsulated mxArray to a .mat file.

Warning: An existing file will be overwritten without warning.

Parameters:

• fileName – the file in which to save the encapsulated data

This function is reimplemented in CDomain and CPropagator.

4.2 CMXNumeric Class Reference

Figure 2. Inheritance diagram for CMXNumeric.

The CMXNumeric class encapsulates numeric type mxArrays, providing various methods to
manipulate the data.

16

4.2.1 Constructor and Destructor Documentation

CMXNumeric(CMXNumeric * theArray)

This function is a copy constructor that makes a deep copy of the encapsulated parameter array.

Parameters:

• theArray – the CMXNumeric object to copy

CMXNumeric(CMXArray * theArray)

This function is another copy constructor, intended primarily for returns from GetField.

Parameters:

• theArray – the CMXArray object to copy

CMXNumeric (const char * fileName,
 const char * arrayName

)

This function creates a new numeric array from the specified file, with the given name.

Warning: This returns an empty array if no data found or if data are not strictly numeric.

Parameters:

• fileName – the file containing the numeric data

• arrayName – the name to give the new object

CMXNumeric (double * data,
 int size

)

This function creates a numeric array from the specified double array.

Parameters:

• data – points to the array holding the data to be copied into the mxArray

• size – the number of elements in the double array

17

CMXNumeric(double * data,
 int size,
 const char * arrayName

)

This function creates a numeric array from the specified double array, with the specified name.

Parameters:

• data – points to the array holding the data to be copied into the mxArray

• size – the number of elements in the double array

• arrayName – the name to give the new object

CMXNumeric(double data)

This function creates a numeric array from the specified scalar double.

Parameters:

• data – the value to be put into the mxArray

CMXNumeric (double data,
 const char * arrayName

)

This function creates a numeric array from the specified scalar double.

Parameters:

• data – the value to be put into the mxArray

• arrayName – the name to give the new object

CMXNumeric(int data)

This function creates a numeric array from the specified scalar integer.

Parameters:

• data – the value to be put into the mxArray

18

CMXNumeric (int data,
 const char * arrayName

)

This function creates a numeric array from the specified scalar integer.

Parameters:

• data – the value to be put into the mxArray

• arrayName – the name to give the new object

4.2.2 Member Function Documentation

double * GetData (void)

This function returns a copy of the internal array. Use the command free to release the memory
when no longer needed.

Returns: A pointer to a copy of the internal array

double GetScalar (void)

This function returns the value of the internal scalar or the first element of the internal array

Returns: The value as a scalar double

bool IsEqual (CMXNumeric * theArray) [virtual]

This function compares with another CMXNumeric to see if their internal arrays contain the
same values.

Parameters:

• theArray – the CMXNumeric array to be compared

Returns: True, if they are equal; false, if they are not

void Print (void)

This function prints to the screen the numeric value(s).

19

4.3 ResultGrid Class Reference

Figure 3. Inheritance diagram for ResultGrid.

The ResultGrid class encapsulates two-dimensional gridded data returned by SPEBE sensor
performance calculations and generates contour plots of the data. It also keeps track of the
computational grid coordinates, so that the data can be referenced to its location within the
computational grid for contour generation.

See also PerformanceCalculator (section 4.18).

4.3.1 Constructor and Destructor Documentation

ResultGrid(ResultGrid * theArray)

This function is a copy constructor.

Parameters:

• theArray – the ResultGrid to be copied

ResultGrid (double * theData,
 int numRows,
 int numCols,
 CDomain * theDomain,
 const char * arrayName

)

This function instantiates a new ResultGrid with data contained in a linear double* array.
NOTE: This assumes the data points are located on the computational grid defined in
theDomain. If they are not, the results are unpredictable.

Parameters:

• array – the returned data to be incorporated into the ResultGrid

• theDomain – the CDomain object associated the data returned by the m-file

• arrayName – the name to be associated with the data array

20

4.3.2 Member Function Documentation

void GenerateContours(double contourValue)

This function generates a set of contours for the encapsulated data, for the specified
contourValue.

Parameters:

• contourValue – the contour value

double * GetContourEasting (int contour)

This function returns the eastings of a specified contour generated by GenerateContours.

Parameters:

• contour – specifies the desired contour

Returns: An array of eastings for the points in the specified contour

double * GetContourLat (int contour)

This function returns the latitudes of a specified contour generated by GenerateContours.

Parameters:

• contour – specifies the desired contour

Returns: An array of latitudes for the points in the specified contour

int GetContourLength(int contour)

This function returns the length of a specified contour generated by
ResultGrid::GenerateContours.

Parameters:

• contour – specifies the desired contour

Returns: The number of points in the specified contour

double * GetContourLong (int contour)

This function returns the longitudes of a specified contour generated by GenerateContours.

Parameters:

• contour – specifies the desired contour

Returns: An array of longitudes for the points in the specified contour

21

double * GetContourNorthing(int contour)

This function returns the northings of a specified contour generated by GenerateContours.

Parameters:

• contour – specifies the desired contour

Returns: An array of northings for the points in the specified contour

double GetGridMax (void)

This function returns maximum value within the grid.

Returns: The maximum grid value

double GetGridMin (void)

This function returns minimum value within the grid.

Returns: The minimum grid value

double GetGridXY (int xx,
 int yy

)

This function returns the value of the specified grid point.

Parameters:

• xx – X index of specified grid point

• yy – Y index of specified grid point

Returns: The value of the grid point with the specified indices

int GetNumContours (void)

This function returns the number of contours generated by ResultGrid::GenerateContours.

Returns: The number of contours

int GetNumGridX (void)

This function returns the number of grid points in the X (east-west) dimension.

Returns: The number of points in the X dimension

22

int GetNumGridY (void)

This function returns the number of grid points in the Y (north-south) dimension.

Returns: The number of points in the Y dimension

4.4 CMXString Class Reference

Figure 4. Inheritance diagram for CMXString.

The CMXString class encapsulates string mxArrays.

4.4.1 Constructor and Destructor Documentation

CMXString (const char * data)

This function creates a new string array containing a copy of the specified string.

Parameters:

• data – the string to be copied into the new array

4.4.2 Member Function Documentation

void Print (void)

This function prints the string to the standard output.

23

4.5 CMXStructure Class Reference

Figure 5. Inheritance diagram for CMXStructure.

The CMXStructure class encapsulates a Matlab array of structures.

The array can contain one or more structure elements. The structures in each element are
composed of identical fields, but each element contains independent values for each field of the
structure. It also includes utility functions for creating and maintaining matlab struct arrays.

USE CASES: This class has no public constructors. It is intended as the base class for three
subclasses:

• CMXMultiStructure for the source and receiver structures, which can represent multiple
elements

24

• CMXSingleStructure for most of the SPEBE data structures

• PerformanceCalculator to invoke sensor performance calculations

See also CMXArray, CMXSingleStructure, CMXMultiStructure, and
PerformanceCalculator.

4.5.1 Member Function Documentation

double GetDouble (int arrayElement,
 const char * fieldName

)

This function returns the specified double.

Parameters:

• arrayElement – integer identifying the index of the element to be retrieved

• fieldName – string identifying the name of the field to be set

Returns: The value requested

CMXArray * GetField (int arrayElement,
 const char * fieldName

)

This function returns the value of a given field for a given element of the array.

Parameters:

• arrayElement – integer identifying the index of the desired element

• fieldName – string identifying the name of the desired field

Returns: The CMXArray pointer to the data

const char * GetFieldName (int fieldIndex)

This function returns the name of the specified field.

Parameters:

• fieldIndex – the index to the specified field

Returns: A constant string containing the fieldName

25

int GetNumFields (void)

This function returns the number of fields in the structure.

Returns: The number of fields

const char * GetString (int arrayElement,
 const char * fieldName

)

This function returns a const char* of the specified field.

Warning: GetString uses a single string buffer to return a const char* string. Thus, the contents
of the buffer will be overwritten upon the next call to GetString. If the returned string must
persist after the next call, then copy it using strdup.

Parameters:

• arrayElement – integer identifying the index of the element to be retrieved

• fieldName – string identifying the name of the field to be retrieved

Returns: The const char* of the requested field

4.6 CMXMultiStructure Class Reference

Figure 6. Inheritance diagram for CMXMultiStructure.

The CMXMultiStructure class adds methods to manage arrays of identical structures. It is
intended to support Source and Rcvr arrays.

USE CASES:

• Load from file into a specified element.

• Set specific fields of all elements.

• Manually set coordinates of individual elements.

26

It also includes a constructor for a single-element, single-field structure containing only the field
zcoord. This is for use with GenPropTab, which needs SourceInfo and RcvrInfo structures as
arguments, but only uses the zcoord.

In any case, there are NO DEFAULTS for Source and Rcvr arrays, so all values must be
provided in the files.

See also CMXStructure, CSourceInfo, and CRcvrInfo.

4.6.1 Member Function Documentation

double GetHeight (int element)

This function returns the height of the specified element.

Parameters:

• element – the index of the specified element

Returns: The height

double GetXCoord (int element)

This function returns the longitude, or X coordinate, of the specified element

Parameters:

• element – the index of the specified element

Returns: The longitude in signed decimal, positive for east

double GetYCoord (int element)

This function returns the latitude, or Y coordinate, of the specified element

Parameters:

• element – the index of the specified element

Returns: The latitude, in signed decimal, positive for north

27

void SetCoordinates (int element,
 double lat,
 double lon

)

This function sets the location of the specified element.

Parameters:

• element – the index of the specified element

• lat – the latitude of the specified element, in signed decimal, positive for north

• long – the longitude of the specified element, in signed decimal, positive for east

void SetHeight (int element,
 double height

)

This function sets the height of the specified element.

Parameters:

• element – the index of the specified element

• height – the height of the specified element

void SetHeight (double height)

This function sets the height of all elements in the array.

Parameters:

• height – height used for all elements of the array

28

4.7 CRcvrInfo Class Reference

Figure 7. Inheritance diagram for CRcvrInfo.

The CRcvrInfo class encapsulates the SPEBE SourceInfo structure.

USE CASES:

• Inherited use cases from CMXMultiStructure

• Create structure by loading from a list of specified file names

Internal behavioral details.

For a detailed description of the encapsulated Matlab SourceInfo structure, see appendix I.

4.7.1 Constructor and Destructor Documentation

CRcvrInfo (double height)

This function creates a single receiver with only the height (Z coordinate) field.

Parameters:

• height – the height (Z coordinate) of the single element

CRcvrInfo (const char * fileName)

This function creates a single receiver from file.

Parameters:

• fileName – the name of the Matlab .mat ReceiverInfo file describing the receiver

29

CRcvrInfo (CRcvrInfo * rcvrInfo)

This function creates a single receiver from a deep copy of an existing single-element
CRcvrInfo.

Parameters:

• rcvrInfo – the existing CRcvrInfo object

CRcvrInfo (int numRcvrs,
 const char * fileName

)

This function creates multiple, identical receivers from a file.

Parameters:

• numRcvrs – the number of identical receivers

• fileName – the name of the Matlab .mat ReceiverInfo file describing the receiver

CRcvrInfo (int numRcvrs,
 CRcvrInfo * rcvrInfo,
 int sourceElement

)

This function creates multiple, identical receivers from a deep copy of a single element of an
existing multiple-element CRcvrInfo.

Parameters:

• numRcvrs – the number of identical receivers to be created

• rcvrInfo – the existing CRcvrInfo object

• sourceElement – the index of the element of the existing CRcvrInfo object to be copied

4.7.2 Member Function Documentation

CRcvrInfo * GetRcvrInfo(int elementNumber)

This function returns a single-element CRcvrInfo from a deep copy of the specified element.

Parameters:

• arrayElement – the index of the element to be copied

30

void LoadFile (int arrayElement,
 const char * fileName

) [virtual]

This function loads a single receiver element from file.

Parameters:

• arrayElement – the index of the element to be loaded from file

• fileName – the name of the Matlab .mat ReceiverInfo file describing the receiver

This function implements CMXMultiStructure.

4.8 CSourceInfo Class Reference

Figure 8. Inheritance diagram for CSourceInfo.

The CSourceInfo class encapsulates the SPEBE SourceInfo structure.

USE CASES:

• Inherited use cases from CMXMultiStructure

• Create structure by loading from a list of specified file names

4.8.1 Constructor and Destructor Documentation

CSourceInfo(double height)

This function creates a single source with only the height (Z coordinate) field.

Parameters:

• height – the height (Z coordinate) of the single element

31

CSourceInfo(CSourceInfo * sourceInfo)

This function creates a single source from a deep copy of an existing single-element.
CSourceInfo.

Parameters:

• sourceInfo – the existing CSourceInfo object

CSourceInfo(const char * fileName)

This function creates a single source from file.

Parameters:

• fileName – the name of the Matlab .mat SourceInfo file describing the source

CSourceInfo (int numSources,
 const char * fileNames[]

)

This function creates multiple sources from a collection of file.

Parameters:

• numSources – the number of sources

• fileNames – an array of size numSources, containing names of the Matlab .mat SourceInfo
files describing the sources

CSourceInfo (int numSources,
 const char * fileName

)

This function creates multiple, identical sources from a file.

Parameters:

• numSources – the number of identical sources

• fileName – the name of the Matlab .mat SourceInfo file describing the source

32

CSourceInfo (int numSources,
 CSourceInfo * sourceSourceInfo,
 int sourceElement

)

This function creates multiple, identical sources from a deep copy of a single element of an
existing multiple-element CSourceInfo.

Parameters:

• numRcvrs – the number of identical sources to be created

• rcvrInfo – the existing CSourceInfo object

• sourceElement – the index of the element of the existing CSourceInfo object to be copied

4.8.2 Member Function Documentation

void LoadFile (int arrayElement,
 const char * fileName

) [virtual]

This function loads a single source element from file.

Parameters:

• arrayElement – the index of the element to be loaded from file

• fileName – the name of the Matlab .mat SourceInfo file describing the source

This function implements CMXMultiStructure.

void SetDirection (int arrayElement,
 double dir

)

This function sets the direction of the specified element.

Parameters:

• arrayElement – index of element

• dir – direction (degrees)

33

void SetDirection (double dir)

This function sets the direction of all elements in the array.

Parameters:

• dir – direction (degrees)

4.9 CMXSingleStructure Class Reference

Figure 9. Inheritance diagram for CMXSingleStructure.

The CMXSingleStructure class streamlines CMXStructure for use with single-element Matlab
structures. Arrays of Matlab structures are managed by CMXMultiStructure.

34

USE CASES:

• Create new structure of default values, then set parameters as needed.

• Create new structure from file, then set parameters as needed.

In either case, default values are also set via the appropriate SPEBE default-parameter m-file.
This m-file is invoked via the SetDefault method, which is virtual in CMXSingleStructure, and
must be overloaded by each derived class.

See also CMXStructure, CMetInfo, CGroundInfo, CNoizInfo, CSeismicInfo, CTerrainInfo,
CBarrierInfo, CDomain, and CPropagator.

4.9.1 Member Function Documentation

double GetDouble (const char * fieldName)

This function returns the specified double.

Parameters:

• fieldName – string identifying the name of the field to be set

Returns: The value requested

CMXArray * GetField (const char * fieldName)

This function returns the data of a specified field.

Parameters:

• fieldName – string identifying the name of the desired field

Returns: A copy of the requested field.

const char * GetString (const char * fieldName)

This function returns a const char* of the specified field.

Warning: GetString uses a single string buffer to return a const char* string. Thus, the contents
of the buffer will be overwritten upon the next call to GetString. If the returned string must
persist after the next call, then copy it using strdup.

Parameters:

• fieldName – string identifying the name of the field to be retrieved

Returns: The const char* of the requested field

35

4.10 CBarrierInfo Class Reference

Figure 10. Inheritance diagram for CBarrierInfo.

The CBarrierInfo class encapsulates the SPEBE BarrierInfo structure.

Barriers are not currently supported by the API, so this class has no methods for specifying,
manipulating, or retrieving parameters. It is provided because it is needed internally by some of
the terrain and domain related m-files which are part of the compiled library.

See also CDomain.

NOTE: Appendix H: CBarrierInfo Supplemental Information has not been included in this
report.

4.10.1 Constructor and Destructor Documentation

CBarrierInfo(void)

This function creates with SPEBE default parameters.

CBarrierInfo(CBarrierInfo * theBarrierInfo)

This function creates a deep copy of another CBarrierInfo object.

Parameters:

• theBarrierInfo – the existing CBarrierInfo object to copy

36

4.11 CDomain Class Reference

Figure 11. Inheritance diagram for CDomain.

The CDomain class encapsulates the SPEBE Origin, Nx, Ny, Lx, Ly, heights, xdom, and ydom
structures, described in this section. Also contains CGroundInfo, CTerrainInfo, CSeismicInfo,
and CBarrierInfo objects for convenience. All these can be initialized from a single call to
LoadFile, using a Terrain.mat file.

Use this class to define the SPEBE domain, which includes the following:

• Origin: the latitude and longitude of the southwest corner of the computational domain

• Extent: the north-south (Ly) and east-west (Lx) extent of the computational domain, in
meters

• Computational grid: the uniform grid of Nx by Ny points at which computations are
performed

• Terrain elevations: read from a Digital Terrain Elevation Data (DTED) directory, which
could be on CD or hard drive

• Timezone: the difference between local time and Greenwich Mean Time (GMT)

• xdom, ydom: used by several SPEBE m-files, and are generated internally from Lx, Ly,
Nx, and Ny.

The CGroundInfo, CTerrainInfo, CSeismicInfo, and CBarrierInfo objects are included for
several reasons:

• All are loaded from a Terrain.mat file.

• All are related to the characterization of the static propagation environment.

• All are generally required by propagation and/or sensor calculations, so their inclusion in a
single class significantly shortens the argument list of many methods.

37

Although the CMetInfo also describes the propagation environment, it is not included for two
reasons:

• It does not represent a static characterization of the environment.

• It is not loaded from a Terrain.mat file.

NOTE: The setters and getters (SetGroundInfo, GetSeismicInfo, etc.) for the embedded
CMXSingleStructures GroundInfo, SeismicInfo, TerrainInfo, and BarrierInfo adhere to the
following:

• The setters make a deep copy of their argument so that the embedded structure is not
affected by subsequent changes to the argument.

• The getters return the actual embedded structure, so that the structure can be modified
directly, rather than having to set a new structure after each change. This doesn’t really
violate encapsulation, since the data within the embedded structure are still encapsulated.

Internal behavioral details.

For a detailed description of the encapsulated Matlab Origin structure and miscellaneous
parameters, see appendix A.

4.11.1 Constructor and Destructor Documentation

CDomain (CDomain * domain)

This function is a copy constructor that makes a deep copy of the argument.

Parameters:

• domain – the existing CDomain object to copy

CDomain (const char * fileName)

This function instantiates a CDomain domain object with data obtained from a Terrain.mat file.

Parameters:

• fileName – the .mat file from which to read the CDomain parameters

38

4.11.2 Member Function Documentation

CBarrierInfo * GetBarrierInfo(void)

This function returns a pointer to the internal CBarrierInfo object. Thus, changes made to the
returned CBarrierInfo object will be reflected in the internal CBarrierInfo object. Compare
this with CDomain::SetBarrierInfo.

Returns: A pointer to the internal CBarrierInfo object

double GetEasternExtent(void)

This function returns the extent of the computational domain in the x (E-W) dimension.

Returns: The eastern extent

CGroundInfo * GetGroundInfo (void)

This function returns a pointer to the internal CGroundInfo object. Thus, changes made to the
returned CGroundInfo object will be reflected in the internal CGroundInfo object. Compare
this with CDomain::SetGroundInfo.

Returns: A pointer to the internal CGroundInfo object

CMXNumeric * GetHeights(void)

This function returns the terrain elevations.

Returns: The terrain elevations as a CMXNumeric

double GetLatitude (void)

This function returns the latitude of the southeast corner of the computational domain.

Returns: The latitude as a signed decimal (positive north, negative south)

double GetLongitude (void)

This function returns the longitude of the southeast corner of the computational domain.

Returns: The longitude as a signed decimal (positive east, negative west)

CMXNumeric * GetLx (void)

This function returns the extent of the computational domain in the x (E–W) dimension.

Returns: The eastern extent as a CMXNumeric

39

CMXNumeric * GetLy (void)

This function returns the extent of the computational domain in the y (N–S) dimension.

Returns: The northern extent as a CMXNumeric

double GetNorthernExtent(void)

This function returns the extent of the computational domain in the y (N–S) dimension.

Returns: The northern extent

int GetNumX (void)

This function returns the number of computational grid points in the x (E–W) dimension.

Returns: The number of grid points returned as an integer

int GetNumY (void)

This function returns the number of computational grid points in the y (N–S) dimension.

Returns: The number of grid points returned as an integer

CMXNumeric * GetNx (void)

This function returns the number of computational grid points in the x (E–W) dimension.

Returns: The number of grid points returned as a CMXNumeric

CMXNumeric * GetNy (void)

This function returns the number of computational grid points in the y (N–S) dimension.

Returns: The number of grid points returned as a CMXNumeric

CSeismicInfo * GetSeismicInfo(void)

This function returns a pointer to the internal CSeismicInfo object. Thus, changes made to the
returned CSeismicInfo object will be reflected in the internal CSeismicInfo object. Compare
this with CDomain::SetSeismicInfo.

Returns: A pointer to the internal CSeismicInfo object

40

CTerrainInfo * GetTerrainInfo(void)

This function returns a pointer to the internal CTerrainInfo object. Thus, changes made to the
returned CTerrainInfo object will be reflected in the internal CTerrainInfo object. Compare
this with CDomain::SetTerrainInfo.

Returns: A pointer to the internal CTerrainInfo object

int GetTimeZone (void)

This function returns the timezone of the computational domain.

Returns: The timezone

void LoadDTEDHeights(const char * DTEDPath)
This function loads terrain elevations from a DTED directory, which can be on CD or hard drive.
Attention: Terrain elevation data are not updated after calls to SetLocation, SetGridDimensions,
or SetGridResolution. Thus, LoadDTEDHeights must be called after all of those calls.

Parameters:

• DTEDPath – the DTED directory

void LoadFile (const char * fileName) [virtual]

This function loads all CDomain data, including that of the embedded CGroundInfo,
CTerrainInfo, CSeismicInfo, and CBarrierInfo objects, from the specified file.

Parameters:

• fileName – the .mat file from which to read the CDomain parameters

This function was reimplemented from CMXSingleStructure.

void SaveToFile (const char * fileName) [virtual]

This function saves all the encapsulated data to a single .mat file.

Warning: An existing file will be overwritten without warning.

Parameters:

• fileName – the file in which to save the encapsulated data

This function was reimplemented from CMXArray.

41

void SetBarrierInfo (CBarrierInfo * barrierInfo)

This function makes a deep copy of barrierInfo and places it in the internal CBarrierInfo object.
Thus, any changes made to barrierInfo after the call to SetBarrierInfo will NOT be reflected in
the internal CBarrierInfo object. Compare this with CDomain::GetBarrierInfo.

Parameters:

• barrierInfo – an external CBarrierInfo object

void SetGridDimensions (int Nx,
 int Ny

)

This function sets the dimensions of the computational grid, the points at which computations are
performed within the computational domain.

Parameters:

• Nx – the number of points in the x (E– W) coordinate

• Ny – the number of points in the y (N– S) coordinate

void SetGridResolution (double xResolution,
 double yResolution

)

This function specifies the grid resolution in meters. This function calculates new Nx and Ny
based on the specified resolution and the current values of Lx and Ly. The grid resolution is not a
persistent SPEBE field, whereas Nx and Ny are. Thus, if new coordinates are set subsequent to
this call, Nx and Ny will remain fixed, and the resulting resolution will change. In order to be
assured of a specific resolution, this call must be made after coordinates have been set.

Parameters:

• xResolution – the distance in meters between grid points in the x, or east/west, direction

• yResolution – the distance in meters between grid points in ty y, or north/south, direction

void SetGroundInfo (CGroundInfo * groundInfo)

This function makes a deep copy of groundInfo and places it in the internal CGroundInfo
object. Thus, any changes made to groundInfo after the call to SetGroundInfo will NOT be
reflected in the internal CGroundInfo object. Compare this with CDomain::GetGroundInfo.

Parameters:

• groundInfo – an external CGroundInfo object

42

void SetLocation1 (double dLat,
 double dLon,
 double dEasternExtent,
 double dNorthernExtent,
 int iTimeZone

)

This function sets the coordinates of the southwest corner of the computational domain, the
extents of the computational domain, and the time zone.

Parameters:

• dLat – the latitude of the origin, in signed decimal (+ north)

• dLong – the longitude of the origin, in signed decimal (+ east)

• dEasternExtent – the eastern (x) extent of the computational domain, in meters

• dNorthernExtent – the northern (y) extent of the computational domain, in meters

void SetLocation2 (double lowerLeftLat,
 double lowerLeftLon,
 double upperRightLat,
 double upperRightLon,
 int iTimeZone

)

This function sets the coordinates of the southwest and northeast corners of the computational
domain and the time zone.

Parameters:

• lowerLeftLat – the latitude of the southwest corner, in signed decimal (+ north)

• lowerLeftLon – the longitude of the southwest corner, in signed decimal (+ east)

• upperRightLat – the latitude of the northeast corner, in signed decimal (+ north)

• upperRightLon – the longitude of the northeast corner, in signed decimal (+ east)

void SetSeismicInfo (CSeismicInfo * seismicInfo)

This function makes a deep copy of CSeismicInfo and places it in the internal CSeismicInfo
object. Thus, any changes made to seismicInfo after the call to SetSeismicInfo will NOT be
reflected in the internal CSeismicInfo object. Compare this with CDomain::GetSeismicInfo.

Parameters:

• seismicInfo – an external CSeismicInfo object

43

void SetTerrainInfo (CTerrainInfo * terrainInfo)

This function makes a deep copy of terrainInfo and places it in the internal CTerrainInfo object.
Thus, any changes made to terrainInfo after the call to SetTerrainInfo will NOT be reflected in
the internal CTerrainInfo object. Compare this with CDomain::GetTerrainInfo.

Parameters:

• terrainInfo – an external CTerrainInfo object

4.12 CGroundInfo Class Reference

Figure 12. Inheritance diagram for CGroundInfo.

The CGroundInfo class encapsulates the SPEBE GroundInfo structure, which contains a
number of parameters characterizing the ground with regard to its acoustic impedance, effect on
wind, and thermal absorption and radiation characteristics. However, these parameters are not
manipulated within the scope of the SPEBE API, but instead are specified via a collection of
files describing various common ground types, including

• Urban,

• Suburban,

• Asphalt,

• Gravel,

• Sand,

• Brush,

• Forest,

• Short grass,

• Long grass,

44

• Open water,

• Ice, and

• Snow.

CGroundInfo objects are created using the constructor CGroundInfo(const char *fileName),
which takes a Matlab data file containing a GroundInfo structure. The API includes the
following files: Urban.mat, Suburban.mat, Asphalt.mat, Gravel.mat, Sand.mat, Brush.mat,
Forest.mat, ShortGrass.mat, LongGrass.mat, OpenWater.mat, Ice.mat, and Snow.mat.

Internal behavioral details.

Users can also provide their own files, which must be created within Matlab. For a detailed
description of the encapsulated Matlab GroundInfo structure, see appendix D.

4.12.1 Constructor and Destructor Documentation

CGroundInfo(void)

This function is created with SPEBE default parameters.

CGroundInfo(CGroundInfo * theGroundInfo)

This function is created with a deep copy of another CGroundInfo object.

Parameters:

• theGroundInfo – the existing CGroundInfo object to copy

CGroundInfo(const char * fileName)

This function is created with parameters specified in a .mat GroundInfo file.

Parameters:

• fileName – the name of a .mat file with GroundInfo data

45

4.13 CMetInfo Class Reference

Figure 13. Inheritance diagram for CMetInfo.

The CMetInfo class encapsulates the SPEBE MetInfo structure. It includes methods to specify
meteorological parameters in several different modes:

• Directly specify a pre-defined refractive profile, using the enumerated type
RefractiveProfile.

• Specify one of a predefined set of conditions, using the enumerated type PredefinedMet,
combining one each from the following:

• sunny day, night, or overcast

• light wind, moderate wind, or strong wind

• Specify a set of surface parameters, using SetSurfaceParameters.

• Specify a set of similarity parameters, using SetScalingParameters.

Internal behavioral details.

For a detailed description of the encapsulated Matlab MetInfo structure, see appendix C.

4.13.1 Member Enumeration Documentation

enum PredefinedMet

This function is for selection of a predefined meteorological case.

Values: SunnyLightWind, SunnyModerateWind, SunnyStrongWind, NightLightWind,
NightModerateWind, NightStrongWind, OvercastLightWind, OvercastModerateWind,
OvercastStrongWind

46

enum RefractiveProfile

This function is for selection of a specific refractive profile type.

Values: NoRefraction, MildUpwardRefraction, StrongUpwardRefraction, DownwardRefraction,
ShallowInversion, DeepInversion

4.13.2 Constructor and Destructor Documentation

CMetInfo(void)

This function is constructed using default values for all fields.

CMetInfo(CMetInfo * mInfo)

This function is constructed using a deep copy of an existing CMetInfo object.

Parameters:

• mInfo – the existing object to copy

CMetInfo(const char * fileName)

This function is constructed with values determined by the specified MetInfo type .mat file.

Parameters:

• fileName – the name of a .mat file containing MetInfo values

4.13.2 Member Function Documentation

double GetT0 (void)

This function returns the surface temperature T0.

Returns: The surface temperature

47

void SetPredefinedMeteorology(PredefinedMet metCase,
 double dWindDir,
 double dTemp,
 double dTempHeight,
 double dRelHumid,
 double dRelHumHeight,
 CGroundInfo * ground

)

This function is set from a predefined meteorological condition, chosen from the enumerated
type PredefinedMet, with specified surface temperature and relative humidity.

Options for the profiles are the following:

• Mostly sunny day, light wind

• Mostly sunny day, moderate wind

• Mostly sunny day, strong wind

• Mostly clear night, light wind

• Mostly clear night, moderate wind

• Mostly clear night, strong wind

• Overcast (day or night), light wind

• Overcast (day or night), moderate wind

• Overcast (day or night), strong wind

Parameters:

• metCase – the predefined profile, chosen from PredefinedMet

• dWindDir – the wind direction

• dTemp – the near-surface temperature, in degrees Celsius

• dTempHeight – the height of the near-surface temperature measurement or forecast, in
meters

• dRelHumid – the near-surface relative humidity, in percent (0% to 100%)

• dRelHumHeight – the height of the near-surface relative humidity measurement or forecast,
in meters

• ground – a CGroundInfo object (needed for the roughness height and displacement
height)

48

void SetRefractiveProfileType(RefractiveProfile refCase,
 double T0,
 double RH

)

This function sets a specified refractive profile, chosen from the enumerated type
RefractiveProfile, with specified surface temperature and relative humidity.

Options for the profiles are the following:

• No refraction

• Mild upward refraction

• Strong upward refraction

• Downward refraction

• Shallow inversion

• Deep inversion

Parameters:

• refCase – the refractive profile type, chosen from RefractiveProfile

• T0 – the surface temperature, in degrees Celsius

• RH – the relative humidity, in percent (0% to 100%)

void SetScalingParameters(double dWindDir,
 double dSurfTemp,
 double dTempHeight,
 double dRelHumid,
 double dRelHeight,
 double dFricVel,
 double dTempScale,
 double dSpecHumScale,
 double dInvHgt,
 CGroundInfo * ground

)

This function sets a collection of surface similarity scaling parameters, including

• wind direction,

• temperature,

• humidity,

49

• friction velocity u*,

• temperature scale T*,

• specific humidity scale q*,

• inversion height, and

• roughness element and displacement height.

Parameters:

• dWindDir – the wind direction

• dTemp – the near-surface temperature, in degrees Celsius

• dTempHeight – the height of the near-surface temperature measurement or forecast, in
meters

• dRelHumid – the near-surface relative humidity, in percent (0% to 100%)

• dRelHumHeight – the height of the near-surface relative humidity measurement or forecast,
in meters

• dFricVel – the friction velocity, in meters/second

• dTempScale – the temperature scale, in degrees Celsius

• dSpecHumScale – the specific humidity scale

• dInvHgt - the height of the first inversion, in meters

• ground - a CGroundInfo object (needed for the roughness element and displacement
height)

void SetSurfaceParameters (double dWindDir,
 double dWindSPeed,
 double dWindHt,
 double dSurfTemp,
 double dTempHeight,
 double dRelHumid,
 double dRelHeight,
 double dInvHgt,
 double cloudCover[3],
 int timeOfDay,
 int dayOfYear,
 int year,
 CDomain * domain

)

50

This function sets a collection of surface parameters, including

• wind speed and direction,

• temperature,

• humidity,

• inversion height,

• cloud cover,

• time of day, day of year, and year, and

• geographic coordinates.

Parameters:

• dWindDir – the wind direction

• dTemp – the near-surface temperature, in degrees Celsius

• dTempHeight – the height of the near-surface temperature measurement or forecast, in
meters

• dRelHumid – the near-surface relative humidity, in percent (0% to 100%)

• dRelHumHeight – the height of the near-surface relative humidity measurement or forecast,
in meters

• dInvHgt – the height of the first inversion, in meters

• cloudCover – a three-element decimal array of cloud-cover fraction at low, medium, and
high elevation

• timeOfDay – time of day, in hours since midnight

• dayOfYear – Julian date

• year – four-digit year

• domain – a CDomain object (needed for geographic location)

51

4.14 CNoizInfo Class Reference

Figure 14. Inheritance diagram for CNoizInfo.

The CNoizInfo class Encapsulates the SPEBE NoizInfo structure, which contains three fields—
the acoustic spectrum, the seismic spectrum, and a flag—to indicate whether or not to include
acoustic wind noise. The acoustic and seismic spectra are, in turn, described by structures
defining the spectral bands in terms of lower and upper frequency, slope, and loudness.

The NoizInfo parameters are not manipulated directly by the user, and are defined by the
specification of separate acoustic and seismic noise files. Several files of each are provided as
part of SPEBE, or new ones can be generated, via the SPEBE GUI, or directly in Matlab. The
parameters may also be set via a single file containing both the acoustic and seismic structures as
well as the IncWind field.

Internal behavioral details.

For a detailed description of the encapsulated Matlab NoizInfo structures, see appendix F.

4.14.1 Constructor and Destructor Documentation

CNoizInfo (void)

This function is created with SPEBE default parameters.

CNoizInfo (CNoizInfo * theNoizInfo)

This function is created with a deep copy of another CNoizInfo object.

Parameters:

• theNoizInfo – the existing CNoizInfo object to copy

52

CNoizInfo (const char * fileName)

This function is created using a NoiseInfo file, which must contain both acoustic and seismic
noise levels, as well as IncWind. This will not work with an acoustic noise file or a seismic noise
file.

Parameters:

• fileName – the name of the file containing both acoustic and seismic structures

4.14.2 Member Function Documentation

void SetAcousticLevel(const char * fileName)

This function sets the acoustic background characteristics by loading parameters from a .mat
acoustic noise file.

Parameters:

• fileName – the name of the file containing the acoustic parameters

void SetSeismicLevel (const char * fileName)

This function sets the seismic background characteristics by loading parameters from a .mat
seismic noise file.

Parameters:

• fileName – the name of the file containing the seismic parameters

53

4.15 CPropagator Class Reference

Figure 15. Inheritance diagram for CPropagator.

The CPropagator class encapsulates the SPEBE PropInfo structure. This also manages acoustic
and seismic PropTab structures internally and includes a CNoizInfo object for convenience. All
these can be initialized with from a single call to LoadFile from a Prop.mat file.

The CNoizInfo object is included for two reasons:

• It is loaded from the same Prop.mat file as PropInfo and the PropTabs.

• It is generally required along with the propagation tables and PropInfo for sensor
calculations.

NOTE: Although the CNoizInfo object is packaged with the CPropagator, it is not used in
propagation table calculations. Thus, the CNoizInfo object can be changed independently of
propagation table generation.

Setters and getters for the embedded CMXSingleStructure NoizInfo adhere to the following:

• The setters make a deep copy of their argument so that the embedded structure is not
affected by subsequent changes to the argument.

• The getters return the actual embedded structure, so that the structure can be modified
directly, rather than having to set a new structure after each change. This doesn’t really
violate encapsulation, since the data within the embedded structure are still encapsulated.

Internal behavioral details.

For a detailed description of the encapsulated Matlab PropInfo, AcsPropTab, and SeisPropTab
structures, see appendix B.

54

4.15.1 Member Enumeration Documentation

enum AcsPropModel

This function is for selection of a specific acoustic propagation model.

Values:

• SPHER_SPREAD – spherical spreading with perfectly reflecting ground

• IMPED_PLANE – spherical spreading with finite impedance ground

• IMPED_PLANE_TURB – spherical spreading with finite impedance ground and empirical
adjustment for turbulent scattering into interference nulls

• RAY_TRACE – ray tracing

• FFP – Fast Field Program

• CPE – finite difference Parabolic Equation

• SCAPE – Green’s function (split-step) Parabolic Equation

• LOAD_TABLE_ACS – load from an acoustic propagation table

enum SeisPropModel

This function is for selection of a specific seismic propagation model.

Values:

• CYLIN_SPREAD – cylindrical spreading

• HARVEY_MODE_SUM – Harvey mode summation

• LOAD_TABLE_SEIS – load from a seismic propagation table

4.15.2 Constructor and Destructor Documentation

CPropagator (CPropagator * thePropagator)

This function is a copy constructor.

Parameters:

• domain – the existing CDomain object to copy

55

CPropagator (const char * fileName)

This function loads all CPropagator data, including that of the embedded CNoizInfo object,
from the specified file.

Parameters:

• fileName – the .mat file from which to read the CPropagator parameters

4.15.3 Member Function Documentation

void GenerateAcousticPropagationTable(double sourceHeight,
 double receiverHeight,
 CMetInfo * metInfo,
 CDomain * domain,
 const char * fileName

)

This function generates an acoustic propagation table using the propagation model specified by
SetAcsPropMod and saves it in the specified file.

See also CMetInfo and CDomainInfo.

Parameters:

• dSourceHeight – the height of the source

• dReceiverHeight – the height of the receiver

• metInfo – pointer to the CMetInfo class holding meteorological parameters and profiles

• domainInfo – pointer to the CDomain class holding the domain parameters

• fileName – the string holding the file name

56

void GenerateSeismicPropagationTable(double sourceHeight,
 double receiverHeight,
 CDomain * domain,
 const char * fileName

)

This function generates a seismic propagation table using the propagation model specified by
SetSeisPropMod and saves it in the specified file.

See also CMetInfo and CDomainInfo.

Parameters:

• dSourceHeight – the height of the source

• dReceiverHeight – the height of the receiver

• metInfo – pointer to the CMetInfo class holding meteorological parameters and profiles

• domainInfo – pointer to the CDomain class holding the domain parameters

• fileName – the string holding the file name

CNoizInfo * GetNoizInfo(void)

This function returns a pointer to the internal CNoizInfo object. Thus, changes made to the
returned CGNoizInfo object will be reflected in the internal CNoizInfo object. Compare this
with CPropagator::SetNoizInfo.

Returns: A pointer to the internal CNoizInfo object

void LoadFile (const char * fileName) [virtual]

This function loads all CPropagator data, including that of the embedded CNoizInfo object,
from the specified file.

Parameters:

• fileName – the .mat file from which to read the CPropagator parameters

This function was reimplemented from CMXSingleStructure.

57

void SaveToFile (const char * fileName) [virtual]

This function saves all the encapsulated data to a single .mat file.

Warning: An existing file will be overwritten without warning.

Parameters:

• fileName – the file in which to save the encapsulated data

This function was reimplemented from CMXArray.

void SetAcsFileName (const char * fileName)

This function sets the file name to be used for acoustic propagation table.

Parameters:

• fileName – the string holding the file name

void SetAcsPropMod (AcsPropModel acsPropModel)

This function sets the acoustic propagation model to be used. It is selected from the enumerated
type acsPropModel.

Parameters:

• acsPropModel – the enumerated type which specifies the acoustic propagation model to be
used

void SetNoizInfo (CNoizInfo * noizInfo)

This function makes a deep copy of noizInfo and places it in the internal NoizInfo object. Thus,
any changes made to groundInfo after the call to SetNoizInfo will NOT be reflected in the
internal CNoizInfo object. Compare this with CPropagator::GetNoizInfo.

Parameters:

• noizInfo – an external noizInfo object

void SetSeisFileName (const char * fileName)

This function sets the file name to be used for seismic propagation table.

Parameters:

• fileName – the string holding the file name

58

void SetSeisPropMod (SeisPropModel seisPropModel)

This function sets the seismic propagation model to be used. It is selected from the enumerated
type seisPropModel.

Parameters:

• seisPropModel – the enumerated type which specifies the seismic propagation model to be
used

4.16 CSeismicInfo Class Reference

Figure 16. Inheritance diagram for CSeismicInfo.

The CSeismicInfo class encapsulates the SPEBE SeismicInfo structure, which defines vertical
profiles of P and S-wave velocity and attenuation as well as density.

The SeismicInfo parameters are not manipulated directly by the user and are defined by the
specification of a Matlab .mat SeismicInfo file. Several files are provided as part of SPEBE, and
new ones can be generated directly in Matlab.

Internal behavioral details.

For a detailed description of the encapsulated Matlab SeismicInfo structure see appendix E.

4.16.1 Constructor and Destructor Documentation

CSeismicInfo(void)

This function is created with SPEBE default parameters.

59

CSeismicInfo(CSeismicInfo * theSeismicInfo)

This function is created using a deep copy of another CSeismicInfo object.

Parameters:

• theSeismicInfo – the existing CSeismicInfo object to copy

CSeismicInfo(const char * fileName)

This function is created using a SeismicInfo file.

Parameters:

• fileName – the name of the file containing SeismicInfo profiles

4.17 CTerrainInfo Class Reference

Figure 17. Inheritance diagram for CTerrainInfo.

The CTerrainInfo class encapsulates the SPEBE TerrainInfo structure, which contains
parameters characterizing random terrain elevations. Random terrain is not currently supported
by the API, so this class has no methods for specifying, manipulating, or retrieving parameters. It
is provided because it is needed internally by some of the terrain and domain related m-files,
which are part of the compiled library.

See also CDomain.

NOTE: Flat terrain and digital terrain elevation data are managed by the CDomain class.

Internal behavioral details.

For a detailed description of the encapsulated Matlab TerrainInfo structure, see appendix G.

60

4.17.1 Constructor and Destructor Documentation

CTerrainInfo(void)

This function is created with SPEBE default parameters.

CTerrainInfo(CTerrainInfo * theTerrainInfo)

This function is created using a deep copy of another CTerrainInfo object.

Parameters:

• theTerrainInfo – the existing CTerrainInfo object to copy

4.18 PerformanceCalculator Class Reference

Figure 18. Inheritance diagram for PerformanceCalculator.

The PerformanceCalculator class performs the sensor performance calculations of SPEBE.

SPEBE sensor calculations operate in one of two modes:

1. Receiver-centric:

• User has selected one or more active receivers (by clicking on them on the map).

• No sources are active.

• User selects a particular source type from calculation pull-down.

2. Source-centric:

• User has selected one or more active sources.

• No receivers are active.

• User selects a particular receiver type from calculation pull-down.

61

The PerformanceCalculator mimics this behavior by allowing users to work in receiver-centric
or source-centric mode, depending on the value of the constructor parameter Recip. (Note that
this is static; if the PerformanceCalculator is instantiated in receiver-centric mode, then it
cannot be changed to source-centric. A new PerformanceCalculator must be instantiated for
that purpose.) The mode-specific behavior of the class is as follows:

Recip = RcvrCentric

• User activates/deactivates particular receivers within the CRcvrInfo via the Activate and
Deactivate methods.

• User specifies which source within the CSourcInfo to use for a particular calculation by
specifying its index via the argument srIndex in the particular calculation method.

Recip = SourceCentric

• User activates/deactivates particular sources within the CSourceInfo via the Activate and
Deactivate methods.

• User specifies which receiver within the CRcvrInfo to use for a particular calculation by
specifying its index via the argument srIndex in the particular calculation method.

If no file names are set using SetAcsPropTableFileName or SetSeisPropTableFileName, then the
file name in the associated PropTab structure in the CPropagator will be used for all associated
calculations. If specific filenames are set using SetAcsPropTableFileName or
SetSeisPropTableFileName, then those file names will be used instead. Note that file names can
be set for all or only specific sources or sensors. Any file name not specifically set will default to
the name stored in the associated PropTab structure.

NOTE: The constructor accepts a CRcvrInfo, CSourceInfo, CMetInfo, CDomain, and
CPropagator object, and also a Recip argument. PerformanceCalculators work on a snapshot of
these arguments, meaning they are copied into the PerformanceCalculator where they remain
static. Any changes to the structures originally passed as arguments will not be reflected in the
PerformanceCalculator. If changes are made to the domain, met, sources, receivers, etc., and
sensor calculations are required for the updated objects then a new PerformanceCalculator
must be instantiated.

See also ResultGrid.

Internal behavioral details.

For a detailed description of the compiled m-files called and associated parameters, see
appendix K.

62

4.18.1 Member Enumeration Documentation

enum Recip

This function sets the source/sensor configuration mode to source-centric or receiver-centric.

Values: SourceCentric, RcvrCentric

4.18.2 Constructor and Destructor Documentation

PerformanceCalculator(CRcvrInfo * rcvrInfo,
 CSourceInfo * sourceInfo,
 CMetInfo * metInfo,
 CDomain * domain,
 CPropagator * propagator,
 Recip recip

)

This function instantiates a new PerformanceCalculator, for the specified parameters, in the
specified mode.

Parameters:

• rcvrInfo – a CRcvrInfo object defining the receiver(s) to be used for the performance
calculations

• sourceInfo – a CSourceInfo object defining the sources(s) to be used for the performance
calculations

• metInfo – a CMetInfo object defining the meteorological parameters to be used for the
performance calculations

• domain – a CRcvrInfo object defining the receiver(s) to be used for the performance
calculations

• propagator – a CDomainInfo object defining the domain to be used for the performance
calculations

• recip – specify source-centric or receiver-centric mode

63

4.18.3 Member Function Documentation

void Activate (int srIndex)

This function is activates the specified source (in source-centric mode) or receiver (in receiver-
centric mode), depending on the mode.

Parameters:

• srIndex – the source or receiver to be activated

void Deactivate (int srIndex)

This function deactivates the specified source (in source-centric mode) or receiver (in receiver-
centric mode), depending on the mode.

Parameters:

• srIndex – the source or receiver to be activated

const char * GetAcsPropTableFileName(int sourceIndex,
 int rcvrIndex

)

This function gets the file name to be used for the specified acoustic propagation table.

Parameters:

• sourceIndex – the specified source

• rcvrIndex – the specified receiver

Returns: The name to be used for the specified acoustic propagation table

int GetNumReceivers (void)

This function indicates the number of receivers defined, independent of mode or activation state.

Returns: The number of receivers

int GetNumSoruces (void)

This function indicates the number of sources defined, independent of mode or activation state.

Returns: The number of sources

64

ResultGrid * GetPD (int sourceIndex,
 int rcvrIndex

)

This function returns the Probability of Detection (PD) grid for the specified source and receiver,
regardless of active or inactive states.

Parameters:

• sourceIndex – the requested source

• rcvrIndex – the requested receiver

Returns: A ResultGrid object containing the requested detection probability data

ResultGrid * GetPD (int srIndex)

This function returns the PD grid for the specified sources and receivers, depending on the mode:
in ReceiverCentric mode, srIndex specifies the requested source, and all active receivers are
used; in SourceCentric mode, srIndex specifies the requested receiver, and all active sources are
used.

Parameters:

• srIndex – the desired source, when in ReceiverCentric mode; the desired receiver, when in
SourcCentric mode

Returns: A ResultGrid object containing the requested detection probability data

const char * GetSeisPropTableFileName (int sourceIndex,
 int rcvrIndex

)

This function gets the file name to be used for the specified seismic propagation table.

Parameters:

• sourceIndex – the specified source

• rcvrIndex - the specified receiver

Returns: The name to be used for the specified seismic propagation table

bool IsActive (int srIndex)

This function indicates whether the specified source (in source-centric mode) or receiver (in
receiver-centric mode) is active, depending on the mode.

Returns: The activation state of the specified source or receiver

65

void SetAcsPropTableFileName (int sourceIndex,
 int rcvrIndex,
 const char * fileName

)

This function sets the file name to be used for the specified acoustic propagation table.

Parameters:

• sourceIndex – the specified source

• rcvrIndex – the specified receiver

• fileName – the name to be used for the specified acoustic propagation table

void SetSeisPropTableFileName(int sourceIndex,
 int rcvrIndex,
 const char * fileName

)

This function sets the file name to be used for the specified seismic propagation table.

Parameters:

• sourceIndex – the specified source

• rcvrIndex – the specified receiver

• fileName – the name to be used for the specified seismic propagation table

66

5. Miscellaneous Functions

void SPEBEInitialize (void) throw (...)

Initializes the dll. Call this function once, at the beginning of the application using the dll, before
calling any method or function in the API. Same as SPEBEInitialize(false).

See also SPEBETerminate.

void SPEBEInitialize (bool) throw (...)

Initializes the dll. Call this function once, at the beginning of the application using the dll, before
calling any method or function in the API.

See also SPEBETerminate.

Parameters:

• jni – true if the dll will be used for native code in a Java application

void SPEBETerminate (void)

Closes the dll. Call this function once, at the end of the application using the dll, when there will
be no further calls to methods or functions of the API.

67

6. Conclusion

This API has been used as the basis for a sensor planning decision aid library, which was then
incorporated into an existing GUI-based sensor placement planning tool. It has also been used in
an acoustic sensor performance web services demonstration. In all cases, it proved to meet the
design goals of providing all the required acoustic sensor performance functionality of SPEBE,
with the flexibility to incorporate that functionality into other GUI and non-GUI based systems,
and without the need to deal with compiled Matlab structures or functions.

Currently, it does not include all of the functionally available in Matlab SPEBE. Many
parameters and calculations that could be provided have not yet been made available through the
interface. This is a relatively simple matter of adding additional methods to the existing classes
in order to set and retrieve additional fields from the embedded mxArray structures, as well as
invoke additional compiled m-files.

However, all the basic tools are in place to manipulate these fields and invoke these m-files, so
that no additional modifications are necessary to the lower-level classes. Additional methods can
be added to the high-level classes as the need arises, using the existing low-level method calls.
Thus, all that is needed is familiarity with the SPEBE architecture and parameters and sufficient
understanding of the necessary calculations to know the appropriate values of the parameters and
the required sequence of calculations in order to produce valid results.

This was done in some cases as the sensor planning library and web services demonstration were
developed, and worked quite well. The additional capabilities were provided through the addition
of methods to the high-level classes, requiring only the knowledge of acoustic calculations and
SPEBE capabilities, but without consideration of the nature of the compiled Matlab
infrastructure.

Thus, the API appears to function as desired and should be a valuable tool for the incorporation
of acoustic sensor performance modeling into Army systems.

68

References

1. Wilson D. K.; Norris, D. E. Statistical distributions of acoustic signals propagated through
the atmosphere, 1998 Meeting of the IRIS Specialty Group on Acoustic and Seismic
Sensing, Laurel, MD, 1999.

2. Wilson, D. K. A Prototype Acoustic Battlefield Decision Aid Incorporating Atmospheric
Effects and Arbitrary Sensor Layouts; ARL-TR-1708; U.S. Army Research Laboratory:
Adelphi, MD, 1998.

3. Wilson, D. K. Performance Evaluator for Battlefield Environments (SPEBE) Tutorial;
RDC/CRREL TR-06-12; Cold Regions Research and Engineering Laboratory: Hanover, NH,
June 2006.

4. Wilson, D. K., Moran, M. L.; Anderson, T. S. Development of a combined acoustic/seismic
tactical decision aid. Proceedings of the Military Sensing Symposia Specialty Group on
Battlefield Acoustics and Seismics, Laurel, MD, 2002.

5. Wilson, D. K.; Kalb, J. T.; Srour, N.; Pham, T; Sadler, B. M. Sensor Algorithm Interface and
Performance Simulations in an Acoustical Battlefield Decision Aid; ARL-TR-2860; U.S.
Army Research Laboratory: Adelphi, MD, 2002.

6. Wilson, D. K.; Nguyen, V. A.; Srour, N.; Noble, J. Sound Exposure Calculations for
Transient Events and Other Improvements to an Acoustical Tactical Decision Aid; ARL-TR-
2757; U.S. Army Research Laboratory: Adelphi, MD, 2002.

7. Wilson, D. K.; Noble, B. M.; Pham, T. Simulation of detection and beamforming with
acoustical ground sensors, SPIE's 17th International Symposium on AeroSense, Orlando,
FL, 2002.

8. Wilson, D. K.; Noble, J. M.; Van Aartsen; B. M., Szeto, G. L. Battlefield decision aid for
acoustical ground sensors with interface to meteorological data sources, SPIE's 15th
International Symposium on AeroSense, Orlando, FL, 2001.

9. Wilson, D. K.; Szeto G. L., Sadler B. M.; Adams, R. N., Srour, N. Propagation and array
performance modeling for acoustic tracking of cruise missiles, 1999 Meeting of the IRIS
Specialty Group on Acoustic and Seismic Sensing, Laurel, MD, 2000.

10. Wilson, D. K.; Szeto, G. L. Reference Guide for the Acoustic Battlefield Aid (ABFA) Version
2; ARL-TR-2159; U.S. Army Research Laboratory: Adelphi, MD, 2000.

69

11. Wilson, D. K.; Szeto, G. L.; Van Aartsen, B. H.; Noble, J. M. A prototype acoustic
battlefield decision aid with interfaces to meteorological data sources and a target database,
2000 Meeting of the MSS Specialty Group on Battlefield Acoustic and Seismic Sensing,
Laurel, MD, 2000.

70

INTENTIONALLY LEFT BLANK.

71

Appendix A. CDomain Supplemental Information

Tables A-1 and A-2 include the origin and miscellaneous fields encapsulated by CDomain.

Table A-1. Origin fields.

Field Name Description Type or Specified Values

lat latitude of southwest corner of domain signed decimal: + north, -
south

long longitude of southwest corner of domain signed decimal: + east, - west

TimeZone difference between local time and Universal Time Coordinated (UTC) integer between 0 and 23

Table A-2. Miscellaneous domain parameters.

Field Name Description Type or Specified Values
Lx Extent in x direction (km) integer
Ly Extent in y direction (km) integer
Nx Number of computational grid points in x direction integer
Ny Number of computational grid points in y direction integer
xdom E-W computational grid coordinates in km real array of size Nx
ydom N-S computational grid coordinates in km real array of size Ny
heights terrain elevation grid real array of size Nx X Ny

72

INTENTIONALLY LEFT BLANK.

73

Appendix B. CPropagator Supplemental Information

Tables B-1 and B-2 include the PropInfo and PropTab fields encapsulated by CPropagator.

Table B-1. PropInfo fields.

Field Name Description Type or Specified Values
AcsPropMod Acoustic Propagation Model 'SpherSpread' spherical spreading,

infinite ground impedance
'ImpedPlane' spherical spreading, finite

ground impedance
'ImpedPlaneTurb' spherical spreading, finite

ground impedance with
turbulence

'RayTrace' ray tracing model
'FFP' fast field program
'CNPE' Crank-Nicholson Parabolic

Equation (wide-angle,
finite-difference)

'SCAPE' Green’s Function Parabolic
Equation (narrow-angle,
split-step)

'LoadTable' load from propagation table
SeisPropMod Seismic Propagation Model 'CylinSpread' cylindrical spreading

'HarveyModeSum' Harvey mode summation
'LoadTable' load from propagation

table
IncTer Terrain diffraction calculation 0 – don’t include terrain diffraction

1 – include terrain diffraction
IncCurv Earth curvature diffraction calculation 0 – don’t include earth curvature

1 – include earth curvature
IncAbsorp include acoustic atmospheric

absorption
0 – don’t include atmospheric absorption
1 – include atmospheric absorption

IncSeisAbsorp include seismic absorption 0 – don’t include seismic absorption
1 – include seismic absorption

PartialSat partial saturation 0 – don’t include partial saturation
1 – include partial saturation

PartialCoh partial coherence 0 – don’t include partial coherence
1 – include partial coherence

IncGain include array in SNR and detection
calculations

0 – don’t include array
1 – include array

Weighting Acoustic sound pressure level
weighting

'unweighted'
'A-weighted'
'C-weighted'

74

Table B-2. PropTab fields (acoustic and seismic).

Field Name Description Type or Specified Values
FileName Name to use for propagation table file
TempFileName Name to use for temporary propagation table file
AutoParam
NumAng Number of angles Integer > 1

MinFreq Minimum frequency real

MaxFreq Maximum frequency real
NumFreq Number of frequencies Integer > 0
LogFreq Logarithmic or linear frequency distribution 0 – linear; 1- logarithmic
MinRange Minimum range real
MaxRange Maximum range real
NumRange Number of range steps Integer > 1
LogRange Logarithmic or linear range distribution 0 – linear; 1- logarithmic

75

Appendix C. CMetInfo Supplemental Information

Table C-1 includes the MetInfo fields encapsulated by CMetInfo.

Table C-1. MetInfo fields.

Field Name Description Type or Specified Values
SpecType meteorological input type

Determines how meteorological parameters or
refractive profiles are specified.

1 – not used
2 – specify refractive profile (RefCase)
3 – specify predefined met case (SimpCase)
4 – specify scaling parameters
5 – specify surface data
6 – read surface message
7 – specify vertical meteorological profiles

RefCase refractive profile type (WeatherCaseRP)

Specifies what type of refractive profile to generate.
Applicable only when SpecType = 2, in which case
no meteorological parameters are specified. Profiles
are defined in GenProf.m.

1 – don’t use predefined profiles
2 – no refraction (NR)
3 – mild upward refraction (MUR)
4 – strong upward refraction (SUR)
5 – downward refraction (DR)
6 – shallow inversion (SI)
7 – deep inversion (DI)

SimpCase predefined meteorological case (WeatherCaseMC)

Specifies a predefined set of scaling parameters.
Applicable only when SpecType = 3. Parameters are
set in WeatherCallbacks.m.

1 – don’t use predefined cases
2 – sunny day, light wind (SL)
3 – sunny day, moderate wind (SM)
4 – sunny day, strong wind (SS)
5 – night, light wind (NL)
6 – night, moderate wind (NM)
7 – night, strong wind (NS)
8 – overcast, light wind (OL)
9 – overcast, moderate wind (OM)
10 – overcast, strong wind (OS)

ShearTurb shear turbulence model

Defined in Weathermenu.m. Used by compMu2.m
and compTurb.m.

2 – none
3 – Kolmogorov
4 – Isotropic Von Karman
5 – Mann RDT

BuoyTurb buoyancy turbulence model

Defined in Weathermenu.m. Used by compMu2.m
and compTurb.m.

2 – none
3 – Kolmogorov
4 – Isotropic Von Karman
5 – Hunt/Graham/Wilson

TempTurb temperature turbulence model

Defined in weathermenu.m. Used by compMu2.m
and compTurb.m.

2 – none
3 – Kolmogorov
4 – Isotropic Von Karman

ustar friction velocity (m/s) real
Tflux surface temperature flux (K*(m/s)) real
qflux surface specific humidity flux (m/s) real
T0 ambient surface air temperature (C) real
T0_hgt height of temperature measurement (m) real

76

Table C-1. MetInfo fields (continued).

Field Name Description Type or Specified Values
RH surface relative humidity (%) real
RH_hgt height of humidity measurement (m) real
U0 surface reference wind speed (m/s) real
U0_hgt height of wind velocity measurement (m) real
winddir wind direction (deg) real
zi inversion height real
CloudCover fractional cloud cover, at low-, mid-, and high- real 3-element vector
Year calendar year integer
DayOfYear day of year (Jan. 1 = 0) integer
TimeOfDay time of day, local standard time (hours) integer
Stations weather stations on display
VirtStations virtual (forecast) weather stations on display
StationID ICAO ID of current station loaded string
vx_prof x component of vertical velocity profile (m/s) real vector
vy_prof y component of vertical velocity profile (m/s) real vector
T_prof vertical temperature profile (Kelvin) real vector
q_prof vertical humidity profile (relative humidity) real vector

Fi
gu

re
 C

-1
. S

PE
B

E
m

et
eo

ro
lo

gi
ca

l c
al

cu
la

tio
n

ex
ec

ut
io

n
flo

w
 d

ia
gr

am
.

77

Pr
oc

Sc
al

in
g.

m

Fo
r W

ea
th

er
C

as
eM

C
,

se
ts

 s
ev

er
al

 s
im

ila
rit

y
pa

ra
m

et
er

s
to

 p
re

de
fin

ed

va
lu

es
.

 P
ar

am
et

er
s

ar
e

st
or

ed
 in

M

et
In

fo
.

G

en
Pr

of
.m

IC
A

SE
 =

 0
:

G
en

er
at

es
 p

ro
fil

es
 v

ia

si
m

ila
rit

y
th

eo
ry

 u
si

ng

pa
ra

m
et

er
s

sp
ec

ifi
ed

in

 M
et

In
fo

 a
nd

G

ro
un

dI
nf

o.

IC
A

SE
 >

 0
:

G
en

er
at

es
 s

ta
nd

ar
d

re
fra

ct
iv

e
pr

of
ile

s
as

sp

ec
ifi

ed
 b

y
th

e
va

lu
e

of
 IC

A
S

E
, w

hi
ch

 in

tu
rn

 is
 d

et
er

m
in

ed
 b

y
R

ef
C

as
e

W
ea

th
er

U
pd

at
e.

m

Sp
ec

Ty
pe

:
2

(re
fra

ct
iv

e
pr

of
ile

s)

Sp
ec

Ty
pe

:
5

(s
ur

fa
ce

 d
at

a)

6
(s

ur
fa

ce
 m

es
sa

ge
)

Sp
ec

Ty
pe

:
7

(v
er

tic
al

 p
ro

fil
es

)

C
on

tro
ls

 e
xe

cu
tio

n
flo

w
.

Sp
ec

Ty
pe

:
3

(p
re

de
fin

ed
 m

et
)

4
(s

ca
lin

g
pa

ra
m

et
er

s)

G
en

er
at

es
 w

in
d

sp
ee

d
an

d
di

re
ct

io
n

pr
of

ile
s,

te

m
pe

ra
tu

re
 p

ro
fil

e,
 a

nd

hu
m

id
ity

 p
ro

fil
e.

 P

ro
fil

es
 a

re
 s

to
re

d
in

M

et
In

fo
.

Sc
al

ar
Pr

of
.m

G
en

er
at

es
 te

m
p

an
d

hu
m

id
ity

 p
ro

fil
es

.
U

se
s

Fe
va

l f
or

 p
si

H
.

W
in

dP
ro

f.m

G
en

er
at

es
 w

in
d

pr
of

ile
s.

U

se
s

Fe
va

l f
or

ps

iM
.

Pr
oc

Su
rf

.m

G
en

er
at

es
 a

pp
ro

pr
ia

te

si
m

ila
rit

y
th

eo
ry

 s
ca

lin
g

pa
ra

m
et

er
s

fro
m

 th
e

su
rfa

ce
 p

ar
am

et
er

s.

 P
ar

am
et

er
s

ar
e

st
or

ed
 in

M

et
In

fo
.

R
ad

B
ud

g.
m

C
om

pu
te

s
th

e
ra

di
at

io
n

bu
dg

et
 fr

om
 th

e
lo

ca
tio

n,
 ti

m
e

of
 d

ay
,

da
y

of
 y

ea
r,

an
d

cl
ou

d
co

ve
r. M
O

Sc
al

es
.m

C
om

pu
te

s
th

e
tu

rb
ul

en
ce

 s
ca

le
s

fo
r

M
on

in
-O

bu
kh

ov

si
m

ila
rit

y.

Ps
iX

XX
.m

V
ar

io
us

 u
ni

ve
rs

al

w
in

d
an

d
te

m
pe

ra
tu

re

si
m

ila
rit

y
pr

of
ile

s,

in
vo

ke
d

dy
na

m
ic

al
ly

vi

a
Fe

va
l c

al
ls

 fr
om

W

in
dP

ro
f a

nd

S
ca

la
rP

ro
f.

G
et

Su
rf

Tu
rb

.m

P
ro

m
pt

s
us

er
 fo

r
ap

pr
op

ria
te

 s
ur

fa
ce

,
tu

rb
ul

en
ce

 s
ca

lin
g,

an

d
cl

ou
d

pa
ra

m
et

er
s.

 W

ea
th

er
C

al
lb

ac
ks

pr

ov
id

es
 a

 b
in

ar
y

m
as

k
to

 s
pe

ci
fy

 w
hi

ch

pa
ra

m
et

er
s

ar
e

to
 b

e
ob

ta
in

ed
.

 V
al

ue
s

re
tu

rn
ed

 v
ia

M

et
In

fo
.

Pr
oc

R
ef

.m

S
et

s
se

ve
ra

l s
im

ila
rit

y
pa

ra
m

et
er

s
to

 z
er

o.

 P
ar

am
et

er
s

ar
e

st
or

ed
 in

M

et
In

fo
.

Lo
ad

Su
rf

ac
e.

m

P
ro

m
pt

s
us

er
 fo

r
su

rfa
ce

 m
es

sa
ge

fil

e.
 L

oa
ds

 a
nd

in

te
rp

re
ts

 M
E

TA
R

an

d
M

IT
/L

L
da

ta

fro
m

 fi
le

.
 V

al
ue

s
re

tu
rn

ed
 v

ia

M
et

In
fo

.

G
et

Ve
rt

Pr
of

.m

P
ro

m
pt

s
us

er
 fo

r
ve

rti
ca

l s
ou

nd
in

g
fil

e.
 R

et
rie

ve
s

ve
rti

ca
l p

ro
fil

es
.

 V
al

ue
s

re
tu

rn
ed

 v
ia

M

et
In

fo
.

G
U

I-R
el

at
ed

 E
xe

cu
tio

n
Fl

ow

C
al

cu
la

tio
n-

R
el

at
ed

 E
xe

cu
tio

n
Fl

ow

W
ea

th
er

C
al

lb
ac

ks
.m

W
ea

th
er

C
as

eR
P

(r
ef

ra
ct

iv
e

pr
of

ile
s)

W
ea

th
er

C
as

eM
C

(p

re
de

fin
ed

 m
et

)

W
ea

th
er

C
as

eM
O

(s

ca
lin

g
pa

ra
m

et
er

s)

W
ea

th
er

C
as

eS
W

(s

ur
fa

ce
 m

es
sa

ge
)

W
ea

th
er

C
as

eV
P

(v
er

tic
al

 p
ro

fil
es

)

C
on

tro
ls

 e
xe

cu
tio

n
flo

w
.

W
ea

th
er

C
as

eS
D

(s

ur
fa

ce
 d

at
a)

Pr
oc

Ve
rt

.m

P
ro

ce
ss

es
 v

er
tic

al

pr
of

ile
s

an
d

de
fin

es

ap
pr

op
ria

te
 s

im
ila

rit
y

pa
ra

m
et

er
s.

 P

ar
am

et
er

s
ar

e
st

or
ed

 in

M
et

In
fo

.

78

INTENTIONALLY LEFT BLANK.

79

Appendix D. CGroundInfo Supplemental Information

Table D-1 includes the GroundInfo fields encapsulated by CGroundInfo.

Table D-1. GroundInfo fields.

Field Name Description Type or Specified Values
Type Name of predefined case string
flowres flow resistivity (cgs), for impedance > 0
por porosity, for impedance 0 <= por <= 1
sB shape factor, for impedance > 0
depth (m), for impedance
disp_hgt displacement height (m), for similarity profile > 0
albedo for radiation characteristics
emissivity for radiation characteristics
Bowen for radiation characteristics

80

INTENTIONALLY LEFT BLANK.

81

Appendix E. CSeismicInfo Supplemental Information

Table E-1 includes the SeismicInfo fields encapsulated by CSeismicInfo.

Table E-1. SeismicInfo fields.

Field Name Description Type or Specified Values

Type Brief description String

zint Heights (m) of vertical profiles Array of double

vp_prof P-wave velocity (m/s) profile Array of double

vs_prof S-wave velocity (m/s) profile Array of double

Qp_prof P-wave attenuation profile Array of double

Qs_prof S-wave attenuation profile Array of double

rho_prof density profile Array of double

82

INTENTIONALLY LEFT BLANK.

83

Appendix F. CNoizInfo Supplemental Information

Tables F-1 and F-2 include the NoizInfo Fields and the NoizInfo.Seismic and NoizInfo.Acoustic
Fields, respectively, encapsulated by CNoizInfo.

Table F-1. NoizInfo fields.

Field Name Description Type or Specified Values
Acoustic Acoustic background noise spectral description Structure (see below)

IncWind Include/don’t include acoustic wind noise effects 0 – no wind; 1 - wind

Seismic Seismic background noise spectral description Structure (see below)

Table F-2. NoizInfo.seismic and NoizInfo.acoustic fields.

Field Name Description Type or Specified Values
Type Identify acoustic or seismic String: Acoustic Noise or Seismic Noise

SubType Brief description String

LowFreq Array containing lower frequency of each band Double array
HighFreq Array containing upper frequency of each band Double array
SpecSlope Array containing spectral slope of each band Double array
loudness Array containing loudness of each band Double array
OctaveBand Use/don’t use octave bands 0 – no octave bands; 1 – octave bands

84

INTENTIONALLY LEFT BLANK.

85

Appendix G. CTerrainInfo Supplemental Information

Figure G-1 includes the TerrainInfo fields encapsulated by CTerrainInfo.

Figure G-1. TerrainInfo fields.

Field Name Description Type or Specified Values
SpecType Method used to generate/load terrain 2 – flat

3 – Gaussian (random)
4 – fractal (random)
5 – Digital Terrain Elevation Data (DTED)
6 – Digital Elevation Model (DEM)
7 – Georeferenced Tagged Image File
Format (GeoTIFF)
8 - Compact Terrain Database (CTDB)

rmshgt RMS height (meters), for Gaussian or fractal terrain double
slope Slope, for Gaussian or fractal terrain double
meanhgt mean height (meters), for Gaussian or fractal terrain double

NOTE: RMS = root mean square

86

INTENTIONALLY LEFT BLANK.

87

Appendix I. CSourceInfo Supplemental Information

Tables I-1 and I-2 include the SourceInfo fields and the SourceInfo.AcsSpec and
SourceInfo.SeisSpec fields encapsulated by CSourceInfo.

Table I-1. SourceInfo fields.

Field Name Description Type or Specified Values
Type Main category (fixed wing, tracked heavy, etc) string

SubType Specific source name string

xcoord X coordinate of source in meters relative to origin double
ycoord Y coordinate of source in meters relative to origin double
speed Speed of source in meters/second double
direc Direction of source in degrees: 0 =east, 90 = north double
rmsspeed RMS speed in meters/second double
zcoord Height of source above ground, in meters double
AcsSpec Acoustic spectrum structure (see below)
SeisSpec Seismic spectrum structure (see below)

Table I-2. SourceInfo.AcsSpec and SourceInfo.SeisSpec fields.

Field Name Description Type or Specified Values
LowFreq Array containing lower frequency of each band double array
HighFreq Array containing upper frequency of each band double array

SpecSlope Array containing spectral slope of each band double array
loudness Array containing loudness of each band double array
OctaveBand Use/don’t use octave bands 0 – no octave bands; 1 – octave bands
rad_pat Radiation pattern string: “monopole”, “simple jet”

88

INTENTIONALLY LEFT BLANK.

89

Appendix J. CRcvrInfo Supplemental Information

Tables J-1 and J-2 include the RcvrInfo fields and the RcvrInfo.SensSpec and
RcvrInfo.NoizSpec fields encapsulated by CRcvrInfo.

Table J-1. RcvrInfo fields.

Field Name Description Type or Specified Values
Type Main category (linear array, polygonal array, etc) string
SubType Specific sensor name string

xcoord X coordinate of source in meters relative to origin double
ycoord Y coordinate of source in meters relative to origin double
zcoord Height of source above ground, in meters double
spacing Distance between elements, in meters double
orient Orientation of array, in degrees double
NumSens Number or elements in array integer
WindScrDiam Wind screen diameter double
PD_algorithm Detection probability algorithm, e.g. Neyman-

Pearson
string

DF_algorithm Direction finding algorithm e.g. Cramer-Rao lower
bound

string

PD_param Parameters associated with PD algorithm array
DF_param Parameters associated with Direction-Finding (DF)

algorithm
array

PD_function Matlab function to implement PD algorithm string
DF_function Matlab function to implement DF algorithm string
SensPos Coordinates of sensor elements relative to centroid array
SensSpec Sensor frequency response spectrum Structure (see below)
NoizSpec Sensor noise spectrum Structure (see below)

Table J-2. RcvrInfo.SensSpec and RcvrInfo.NoizSpec fields.

Field Name Description Type or Specified Values
LowFreq Array containing lower frequency of each band double array
HighFreq Array containing upper frequency of each band double array

SpecSlope Array containing spectral slope of each band double array
loudness Array containing loudness of each band double array
OctaveBand Use/don’t use octave bands 0 – no octave bands; 1 – octave bands
rad_pat Radiation pattern string: “monopole”, “simple jet”

90

INTENTIONALLY LEFT BLANK.

91

Appendix K. PerformanceCalculator Supplemental Information

Table K-1 includes the SPEBE parameters used by PerformanceCalculator.

Table K-1. SPEBE parameters used by PerformanceCalculator.

CalcCall calculations (DispType argument)
Value Calculation

‘TL’ Transmission loss
‘sat’ saturation
’coh’ coherence
‘PD’ Probability of detection
‘Pfa’ Probability of false alarm
‘DF’ Direction-finding accuracy
‘LFA’ Location-finding accuracy
‘VFA’ Velocity-finding accuracy
‘SNR’ Signal-to-noise ratio
‘SAVE’ Generate and save propagation table

92

INTENTIONALLY LEFT BLANK.

93

Acronyms

2-D two-dimensional

API Application Programming Interface

CTDB Compact Terrain Database

DEM Digital Elevation Model

DF Direction-Finding

DTED Digital Terrain Elevation Data

GeoTIFF Georeferenced Tagged Image File Format

GMT Greenwich Mean Time

GUI Graphical User Interface

MFC Microsoft Foundation Class

PD Probability of Detection

RMS root mean square

SPEBE Sensor Performance Evaluator for Battlefield Environments

UTC Universal Time Coordinated

94

Distribution List

No. of
Copies Organization

1 elec ADMNSTR
 DEFNS TECHL INFO CTR
 DTIC OCP (ELECTRONIC COPY)
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

5 CDs US ARMY RSRCH LAB
 IMNE ALC IMS MAIL & RECORDS
 MGMT
 AMSRD ARL D J M MILLER
 AMSRD ARL CI OK TL TECHL LIB

 AMSRD ARL CI OK T TECHL PUB
 (2 copies)

 2800 POWDER MILL ROAD
 ADELPHI MD 20783-1197

1 CD US ARMY RESEARCH LAB
 AMSRD CI OK TP TECHL LIB
 ATTN T LANDFRIED
 APG MD 21005

1 CD US ARMY RSRCH LAB
 DR D MARLIN
 AMSRD ARL CI EM
 WSMR NM 88002-5501

1 CD US ARMY RSRCH LAB
 DR J NOBLE
 AMSRD ARL CI ES
 ADELPHI MD 20783-1197

No. of
Copies Organization

1 CD US ARMY RSRCH LAB
 DR S COLLIER
 AMSRD ARL CI ES
 ADELPHI MD 20783-1197

1 CD US ARMY RSRCH LAB
 L PARKER
 AMSRD ARL CI EM
 ADELPHI MD 20783-1197

1 CD US ARMY RSRCH LAB
 N SROUR
 AMSRD ARL SE SE
 ADELPHI MD 20783-1197

1 CD ERDC CRREL
 SIGNATURE PHYSICS BRANCH
 ATTN DR K WILSON
 72 LYME RD
 HANOVER NH 03755-1290

1 CD US ARMY ARDEC
 AMSTA AR FSF R
 ATTN J CHANG
 BLDG 95N
 PICATINNY ARSENAL NJ 07806-5000

1 CD RDECOM/ARDEC
 AMSRD AAR AEP A
 ATTN J HEBERLEY
 BLDG 407
 PICATINNY ARSENAL NJ 07806-5000

15 Total: 1 electronic copy and 14 CDs

	Army Research Laboratory
	List of Figures
	List of Tables
	Summary
	1. Introduction
	2. Basic Architecture
	2.1 SPEBE Structures
	2.2 Location, Environment, and Computational Grid
	2.3 Propagation Calculations
	2.4 Sensor Calculations
	2.5 Some Examples

	3. Class List
	4. Class Hierarchy
	4.1 CMXArray Class Reference
	4.1.1 Constructor and Destructor Documentation
	4.1.2 Member Function Documentation

	4.2 CMXNumeric Class Reference
	4.2.1 Constructor and Destructor Documentation
	4.2.2 Member Function Documentation

	4.3 ResultGrid Class Reference
	4.3.1 Constructor and Destructor Documentation
	4.3.2 Member Function Documentation

	4.4 CMXString Class Reference
	4.4.1 Constructor and Destructor Documentation
	4.4.2 Member Function Documentation

	4.5 CMXStructure Class Reference
	4.5.1 Member Function Documentation

	4.6 CMXMultiStructure Class Reference
	4.6.1 Member Function Documentation

	4.7 CRcvrInfo Class Reference
	4.7.1 Constructor and Destructor Documentation
	4.7.2 Member Function Documentation

	4.8 CSourceInfo Class Reference
	4.8.1 Constructor and Destructor Documentation
	4.8.2 Member Function Documentation

	4.9 CMXSingleStructure Class Reference
	4.9.1 Member Function Documentation

	4.10 CBarrierInfo Class Reference
	4.10.1 Constructor and Destructor Documentation

	4.11 CDomain Class Reference
	4.11.1 Constructor and Destructor Documentation
	4.11.2 Member Function Documentation

	4.12 CGroundInfo Class Reference
	4.12.1 Constructor and Destructor Documentation

	4.13 CMetInfo Class Reference
	4.13.1 Member Enumeration Documentation
	4.13.2 Constructor and Destructor Documentation

	4.14 CNoizInfo Class Reference
	4.14.1 Constructor and Destructor Documentation

	4.15 CPropagator Class Reference
	4.15.1 Member Enumeration Documentation
	4.15.2 Constructor and Destructor Documentation
	4.15.3 Member Function Documentation

	4.16 CSeismicInfo Class Reference
	4.16.1 Constructor and Destructor Documentation

	4.17 CTerrainInfo Class Reference
	4.17.1 Constructor and Destructor Documentation

	4.18 PerformanceCalculator Class Reference
	4.18.1 Member Enumeration Documentation
	4.18.2 Constructor and Destructor Documentation
	4.18.3 Member Function Documentation

	5. Miscellaneous Functions
	6. Conclusion
	References
	Appendix A. CDomain Supplemental Information
	Appendix B. CPropagator Supplemental Information
	Appendix C. CMetInfo Supplemental Information
	Appendix D. CGroundInfo Supplemental Information
	Appendix E. CSeismicInfo Supplemental Information
	Appendix F. CNoizInfo Supplemental Information
	Appendix G. CTerrainInfo Supplemental Information
	Appendix I. CSourceInfo Supplemental Information
	Appendix J. CRcvrInfo Supplemental Information
	Appendix K. PerformanceCalculator Supplemental Information
	Acronyms
	Distribution List

